

Network Opportunity Map 2025

NOM 2025

Public

October 2025

An appropriate citation for this paper is:

Western Power Network Opportunity Map 2025

Western Power

363 Wellington Street

Perth WA 6000

GPO Box L921 Perth WA 6842

T: 13 10 87 | Fax: 08 9225 2660

TTY 1800 13 13 51 | TIS 13 14 50

Electricity Networks Corporation

ABN 18 540 492 861

Enquiries about this report should be directed to:

Western Power Mailbox

Distribution Grid Strategy & Planning

Email: NOM.TSP@westernpower.com.au

Disclaimer

Western Power's Network Opportunity Map 2025 (NOM2025) is prepared and made available solely for information purposes. While reasonable effort has been made to ensure the quality of the information in this publication, Western Power accepts no responsibility or liability for any loss or damage that may be incurred by a person acting in reliance on this information or assumptions drawn from it. This publication contains certain predictions, estimates, and statements that are made on various assumptions. The assumptions may or may not prove correct, and they may change over time. Anyone proposing to use the information in this publication should independently verify the accuracy, completeness, reliability, currency, and suitability for purpose, and obtain independent and specific advice from appropriate experts.

Western Power makes no representation or warranty, express or implied, as to the accuracy, reliability, completeness, currency, or suitability for purpose of the information, representations, or statements in this publication. Persons reading or utilising this document acknowledge that Western Power and their employees, agents and consultants are not liable (whether by reason of negligence or otherwise) for any statements, opinions, information or other matters (expressed or implied) arising out of, contained in or derived from, or for any omissions from, the information in this document, except insofar as liability under any Western Australian or Commonwealth statute cannot be excluded.

The information contained in the NOM2025 is subject to annual review. Western Power is obligated to publish future editions by 1 October each year, in accordance with the Electricity Network Access Code 2004 and changes made in September 2020.

Contents

Contents	iii
Abbreviations	iv
Executive summary	7
1. Introduction	8
1.1 About Western Power	8
1.2 Role of the Network Opportunity Map.....	14
1.3 Network of the future.....	17
1.4 Network Support Services.....	21
2. Transmission network	22
2.1 Transmission regions	22
2.2 Transmission System Plan.....	23
2.3 Interaction between the TSP and NOM.....	23
2.4 Zone substation loading - historical and forecast performance	23
2.5 Transmission network opportunities.....	23
3. Distribution network	24
3.1 Challenges	25
3.2 Distribution network performance strategies	25
3.3 Performance measures	26
3.4 Identified opportunities	31
Appendix A ACCESS CODE 2020 REQUIREMENTS	50
A.1 Access Code requirements indexed to Network Opportunity Map 2025	51
Appendix B METHODOLOGIES	54
B.1 Planning methodology	55
B.2 Asset management methodology	59
Appendix C INVESTMENTS.....	70
C.1 Investment Management framework.....	71
C.2 Network opportunity valuation	72
C.3 Network investments.....	73

Abbreviations

The following table provides a list of abbreviations and acronyms used throughout this document. Defined terms are identified in this document by capitals.

Term	Definition
AA	Access Arrangement
Access Code	Electricity Networks Access Code 2004 (& subsequent amendments)
Act	Electricity Industry Act 2004 (& subsequent amendments)
ADV	Annual Deferred Value
AEMO	Australian Energy Market Operator
AMF	Asset Management Framework
AMI	Advanced Meter Infrastructure
AMS	Asset Management System
AOS2025	Alternative Options Strategy 2025
BC	Business Case
BCH	Beechboro Zone Substation
BYF	Byford Zone Substation
CAG	Competing Applications Group
CBD	Central Business District
CKN	Clarkson Zone Substation
CPI	Consumer Price Index
CUSTED forecasts	Customers, Technology, Energy and Demand trends adjusted forecasts
DER	Distributed Energy Resources
DNSP	Distribution Network Service Providers
EDL1	Electricity Distribution Licence
EGF	Eastern Goldfields
EOI	Expressions of Interest
EPWA	Energy Policy Western Australia
ERA	Economic Regulation Authority
ERG	Emergency Response Generator
ETL2	Electricity Transmission Licence
ETT	Energy Transformation Taskforce
EV	Electric Vehicles
FRZ	Fire Risk Zone
FSP	Flexibility Services Pilot
FY	Financial Year

GIA	Generator Interim Access
GTEng	Grid Transformation Engine
HV	High Voltage
HVIU	HV Injection Unit
HBK	Henley Brook Zone Substation
IAR	Investment Approval Requests
KMG	Kalbarri Microgrid
LV	Low Voltage
MAOSC2025	Model Alternative Option Service Contract 2025
MH	Mandurah Zone Substation
MRL	Mean Replacement Life
MSS	Meadow Springs Zone Substation
MV	Medium Voltage
NBV	Net Benefit Valuation
NCMT	Network Capacity Mapping Tool
NSS	Network Support Service
NFIT	New Facilities Investment Test
NOM	Network Opportunity Map
NOM webpage	Network Opportunity Map webpage www.westernpower.com.au/network-opportunity-map
NOM2025	Network Opportunity Map 2025 (this document)
NQRS Code	Electricity Industry (Network Quality and Reliability of Supply) Code
NP	Network Plan
NSP	Network Service Provider
POE	Probability of Exceedance
PV	Photovoltaic Systems
RFP	Request for Proposal
RIS	Required in Service (date, usually part of a project definition)
RMU	Ring Main Units
ROI	Registration of Interest
SAIDI	System Average Interruption Duration Index
SAIFI	System Average Interruption Frequency Index
SCED	Security Constrained Economic Dispatch
SNR	Southern River Zone Substation
SOTI	State of the Infrastructure Report
SPS	Stand-alone Power System

SSAM	Service Standard Adjustment Mechanism
SSB	Service Standard Benchmark
SST	Service Standard Target
SVC	Static Var Compensator
SWIN	South West Interconnected Network
SWIS	South West Interconnected System
TR	Technical Rules
TSP	Transmission System Plan
VPP	Virtual Power Plant
WA	Western Australia
WAI	Waikiki Zone Substation
ESM	Electricity System and Market Rules
WOSP	Whole of System Plan
WOSS	Whole of System Study
YP	Yançep Zone Substation

Executive summary

Western Power's Network Opportunity Map 2025 (NOM2025) provides a clear and strategic view of the future of the South West Interconnected System (SWIS), outlining the key challenges and strategic directions for the next five to ten years. As the energy landscape rapidly evolves—with surging renewable energy integration and emerging technologies—NOM2025 identifies critical network risks and constraints and invites third-party providers to contribute innovative solutions.

Published alongside the Alternative Options Strategy (AOS) and the Model Alternative Option Service Contract (MAOSC), NOM2025 is available on the Network Opportunity Map webpage (NOM webpage)¹, which also features downloadable data in a user-friendly format. The webpage includes a vendor registration form and contact details, creating a direct channel for Western Power to collaborate with customers and industry stakeholders on alternative solutions.

This provision of this information aligns with the requirements of Chapter 6A of the Electricity Networks Access Code 2004, updated in September 2020. NOM2025 not only highlights emerging constraints across Western Power's transmission and distribution networks but also provides insights into the methodologies used to assess and address these challenges. It outlines the regulatory frameworks guiding investment decisions, helping stakeholders anticipate future opportunities and contribute to a more resilient, flexible energy network.

¹ [Transmission system plan & network opportunity map](#)

1. Introduction

Western Power is a Western Australian State Government owned corporation responsible for building, maintaining and operating an electricity network which connects our 2.3 million customers to traditional and renewable energy sources, delivering a critical service to the community.

It provides customers across the South West Interconnected System (SWIS) with safe, reliable, and efficient electricity, growing with the State and changing with the times.

Our vast transmission and distribution network connects homes, businesses and essential community infrastructure to an increasingly renewable energy mix while meeting the changing energy needs of the Western Australian community. Demand for cleaner energy is transforming the traditional electricity value chain and understanding how the network needs to transform in response is the key to unlocking future opportunities for our customers, communities, businesses, and the State.

The NOM process enables this transformation by proactively seeking the input of business and industry when addressing the needs of the network and harnessing alternative solutions developed to benefit all Western Power customers.

The NOM has three distinct purposes:

- to provide a snapshot of the opportunities, challenges, risks and constraints emerging for the network in the planning period (five years) and in the foreseeable long term (10 years).
- to give all customers, industry and market participants an opportunity to anticipate network needs and proactively provide alternative solutions to those traditionally available to Network Service Providers (NSPs).
- to outline how Western Power will seek out, evaluate and engage with interested parties in developing alternative solutions to network constraints.

NOM2025 offers insight into emerging opportunities for development and deployment of alternative solutions. For some loads and/or generators, opportunities might be in the form of network areas with under or over-utilisation, both on transmission and distribution networks. For alternative solutions, opportunities could also include demand management, energy storage, reliability improvements and many other solutions, with focus on areas of the network where emerging constraints and issues have been identified.

The referenced data sheets listed on the NOM webpage include information that was previously published by Western Power through other channels such as our Annual Planning Report.

1.1 About Western Power

1.1.1 Our network

Western Power builds, maintains and operates the electricity network in the southwest corner of Western Australia, covering Noongar, Yamatji and Wangkatha Nations. The Western Power Network forms the vast majority of the South West Interconnected Network (SWIN), which together with all of the electricity generators, comprises the South West Interconnected System (SWIS). The network services an area of

255,064km², covering a vast area from Kalbarri in the north to Albany and Bremer Bay in the south, and extending east to Kalgoorlie. It supports over 1.2 million connected customers and includes more than 2.8 GW of rooftop solar capacity—installed on over 39% of homes and businesses. The system also features 2.2 GW of PV inverter capacity, contributing significantly to Western Australia's renewable energy landscape.

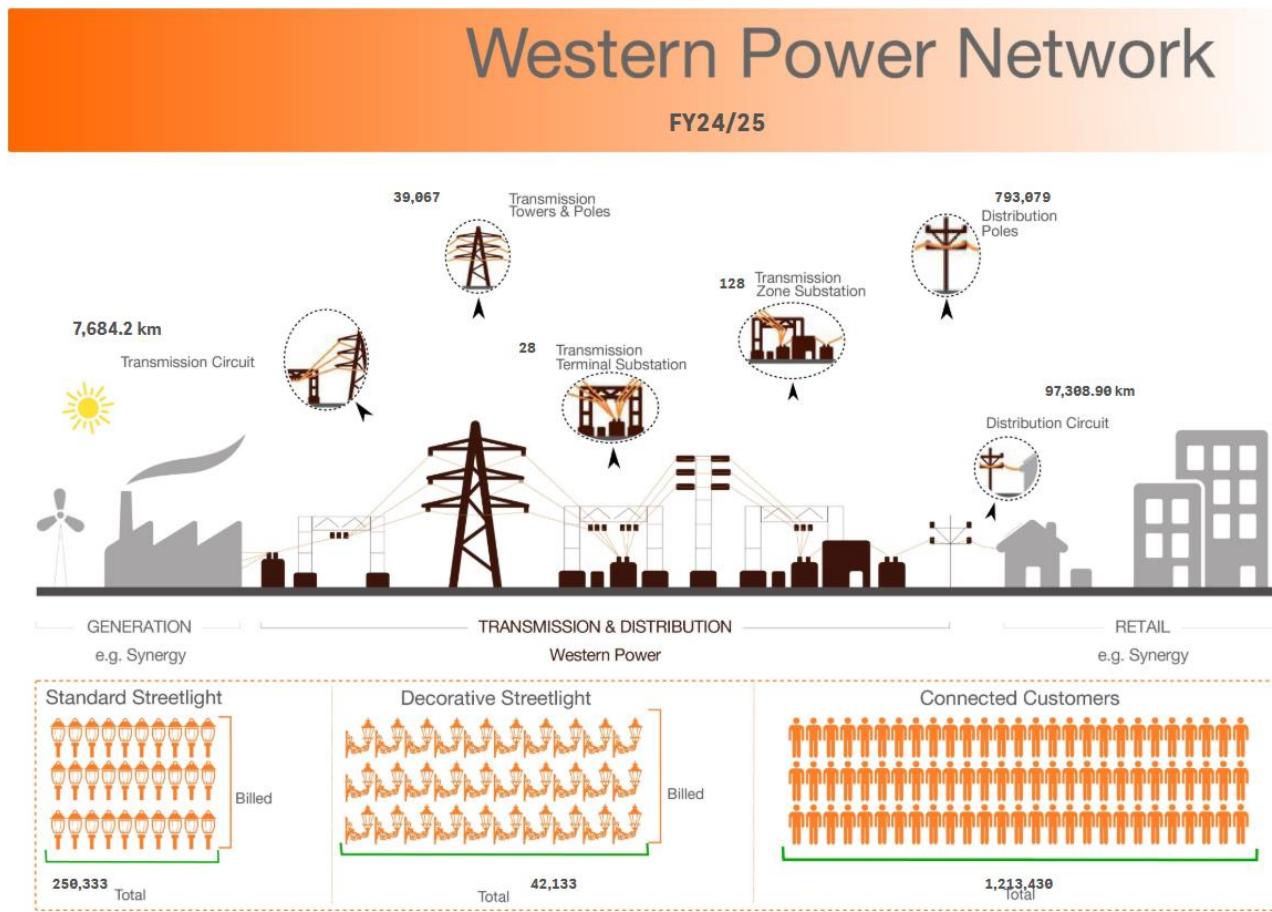


Figure 1.1: Overview of the Western Power Network²

The Western Power network is unique due to its geographical size and overall low density of connections, and its isolation and lack of interconnections to any other large systems. These attributes make the network uniquely challenging to operate and maintain.

² As per August 2025

Network Metrics 2024/2025²

Figure 1.2: Western Power network metrics FY2024/25

The network incorporates:

- 17 community batteries
- More than 22,947 customers with residential battery installation with 279MWH of battery capacity and 147MW of battery inverter capacity
- More than 2.8 GW of rooftop solar (about 42 per cent of homes)

Western Power's network is inherently dynamic and complex, with changing customer needs and expectations. We aim to be agile and responsive to these factors while maintaining a safe, reliable and efficient electricity supply, ultimately delivering an affordable and quality product for all Western Australians.

The way we produce electricity and use it in our homes and businesses is evolving. We're tapping into more renewables that will help decarbonise our electricity supply, and new power generation and distribution technology is making it easier and more efficient to transport energy over long distances.

1.1.2 Our Corporate Strategy, vision and values

Western Power's Corporate Strategy 2023-2031³ is driven by an ambitious and forward-focused vision for the organisation: *Working together to power a cleaner energy future*, while ensuring our community remains at the centre of all we do.

Our Corporate Strategy highlights a number of key priorities areas for our network in response to strategic trends and Government policy objectives. These include:

- Driving substantial transmission network expansion in response to decarbonisation objectives of industry, businesses, households and Government, while also supporting further State economic growth. Initial transmission network expansion works will be focused in the northern area of the South West Interconnected System (SWIS), with subsequent activities in other areas to come.
- Continued transformation into the Distribution System Operator (DSO) which will support safe management and enable customer and network value to be extracted as a result of increasing adoption of Distributed Energy Resources (DER) such as rooftop solar, Electric Vehicles (EVs) and residential Battery Energy Storage Systems (BESS).
- Expansion of the distribution and transmission network in response to underlying increases in energy demand driven by households' consumption and Government policies for increasing housing supply.
- Retirement and replacement of existing network with innovative technologies in response to an ageing and geographically widespread network and ongoing climate challenges, to enhance public safety and energy supply reliability. These technologies include undergrounding in urban areas and installing Stand-alone Power Systems (SPS) and microgrids in fringe-of-grid areas.

In addition to transformation of our network, our Corporate Strategy highlights several critical non-network areas in which success must be achieved, including:

- High safety performance – ensuring all of our people go home healthy, well and safe every day.
- Sourcing and building the people, skills, culture and technology necessary to deliver on our contribution to the energy transition.
- Maintaining a rigorous approach to financial sustainability to deliver on the energy transition.

Our Vision

Working together to power a cleaner energy future for the customers and communities covered by our network area. Western Power is committed to delivering safe, reliable, affordable and increasingly renewable electricity supply to the community and industry.

³ Western Power Corporate Strategy | 2023-2031

Our values

Our values

Safe and caring

We always work safely because we care. We all take responsibility for protecting our people, our community, and the environment. We assess and manage risk – if it's not safe we don't do it

Results focused

We focus on the end goal. We spend our time and money wisely. We set challenging goals, work hard and hold ourselves accountable to deliver for our customers.

Acting with integrity

We exercise good judgement. We do the right thing. We build trusted relationships by being open and honest.

Working together

We're one team with a shared purpose. We collaborate with our colleagues, our customers and the community to get the job done. We consider the impact of our work on others.

Always improving

We're always looking for ways to be better, no matter how big or small. We innovate to solve problems and seize opportunities. We are resilient and embrace change.

1.1.3 Our operating environment

Western Power is a Western Australian State Government owned corporation responsible for building, maintaining and operating an electricity network. We are licenced under the Electricity Industry Act 2004 and regulated by the Economic Regulation Authority (ERA), which grants us our Electricity Transmission Licence (ETL2) and Electricity Distribution Licence (EDL1) and determines Western Power's revenue, services, policies and incentives via the access arrangement (AA). The network facilitates the Electricity System and Market Rules (ESM) which is operated by the Australian Energy Market Operator (AEMO).

These laws and regulations govern all aspects of our operations, from how funding for works is obtained to our standards of supply and tariff structure. For more information, visit the Energy Policy WA (EPWA) website⁴.

⁴ <https://www.wa.gov.au/organisation/energy-policy-wa/regulatory-framework>

Figure 1.3: Western Power's role within Western Australia's electricity market

1.2 Role of the Network Opportunity Map

1.2.1 What is the Network Opportunity Map?

The Network Opportunity Map (NOM) is an invitation to understand, engage with and contribute to the future of the South West Interconnected System (SWIS). The NOM is also a regulatory requirement for Western Power, as outlined in chapter 6A of the Access Code⁵. Detailed information about the content and timing requirements of the NOM can be found in Appendix A, along with references to relevant sections of this document.

The NOM is intended to work hand in hand with several other initiatives (Section 1.3) aimed at transforming our electricity industry into a flexible, future-focused model that leverages cleaner and more efficient new technologies in a more sustainable way.

A dedicated NOM webpage has been established within the Western Power website:
www.westernpower.com.au/network-opportunity-map

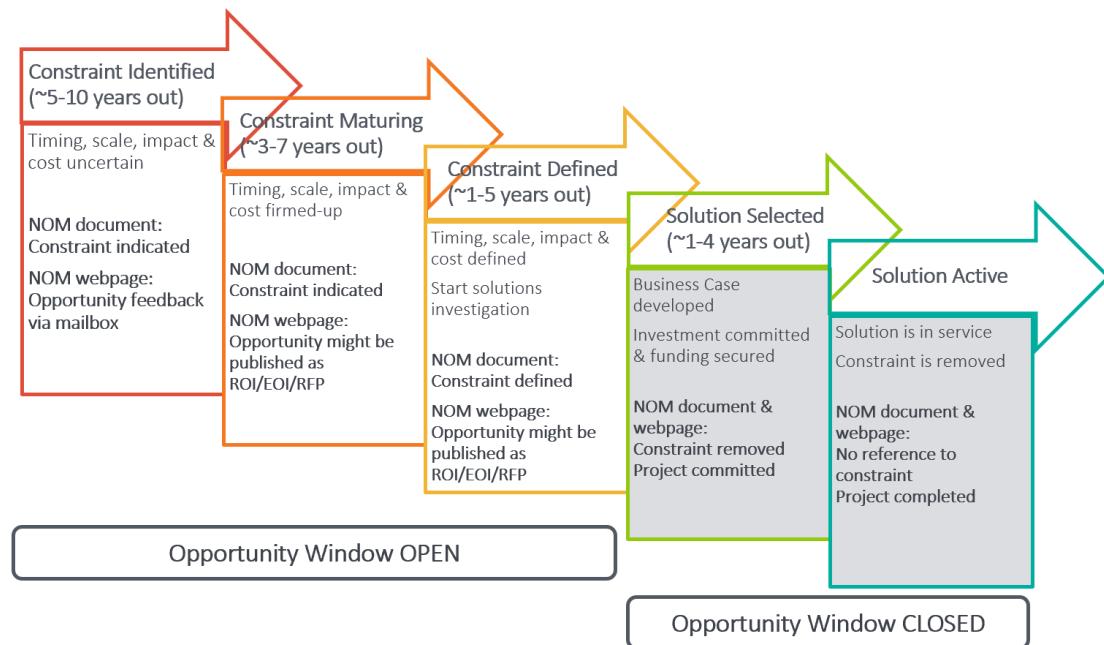
The NOM webpage houses all NOM related documentation, data, forms, links and contact details including:

- The current edition of the Network Opportunity Map NOM2025 (this document)
- The current edition of the Transmission System Plan (Draft TSP2025 for consultation due to be published December 2025)
- The current edition of the Alternative Options Strategy, AOS2025
- The current edition of the Model Alternative Options Strategy Contract, MAOSC2025
- Data sheets supporting the NOM2025
- A vendor NOM registration form (three-year rolling register)
- Email contact details for feedback and suggestions (NOM.TSP@westernpower.com.au)

1.2.2 How are constraints identified?

The network we operate is always changing: the topology changes daily due to switching for planned and un-planned reasons, while the profile of demand and supply at various points can change minute by minute. Because of this, several assumptions must be made when identifying emerging risks and constraints. These are based on the best data available at the time, including but not limited to anticipated demand and supply patterns, the condition and capability of specific assets, changes in policy and regulatory requirements, and emerging technology. More details about the methodologies that influence network condition evaluations can be found in Appendix B.

The risks and constraints identified in any NOM version offer a snapshot of what we know about our network at that point in time. The amount of detail associated with each constraint can vary significantly, from well-defined and eventuating within a few years, to broad and with a timeframe extending to 10 years or beyond. The speed with which a constraint progresses to maturity depends on many factors, including the magnitude of the issue and applicable voltage as well as unforeseen events that may affect it.



⁵ Electricity Networks Access Code - Unofficial Consolidated Version (www.wa.gov.au)

While the NOM is published once a year, the solution development process for the network is continuous, with new information gathered about each issue year-round. A constraint is said to mature as the level of its certainty, detail and definition increases.

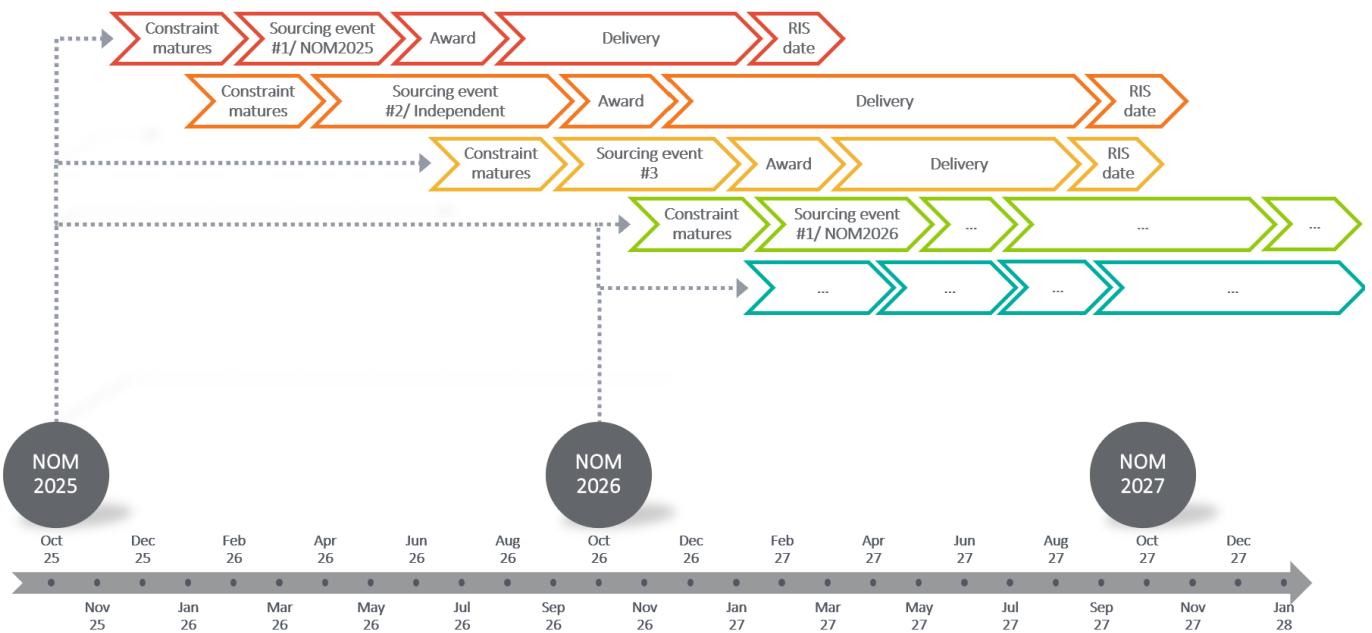
Figure 1.4 below shows a typical constraint maturation lifecycle with some notional timing.

Conceptual Constraint Lifecycle

Figure 1.4: Example of a constraint maturation lifecycle

1.2.3 When is an opportunity ready for an alternative solution?

The emerging risks and constraints indicated within this document can be used to anticipate where, when and what kind of solutions might be required on the network in the coming years, presenting opportunities for participation. Some risks or constraints may suit alternative solutions, while others will be better served by traditional network solutions. In either case all customers, industry and market participants can use the information to gain an indication of the type of works Western Power may undertake in the short to medium term, and to proactively offer solutions to overcome risks and constraints.


The magnitude and nature of an issue, as well as certainty of the timing for the risk or constraint, plays a role in determining when Western Power needs to commit to a solution that will address or defer the issue. Western Power may also evaluate the suitability of each risk or constraint as an opportunity for an alternative solution and establish a benefits baseline through comparison with a traditional network solution.

When a particular risk or constraint (or a group) identified as suitable for an alternative solution reaches critical maturity, a sourcing event may be raised.

From 1 February 2022 new ESM Rules (previously known as Wholesale Electricity Market – WEM Rules), came into effect, placing obligations on Western Power to follow the procurement process

outlined in section 3.11B when procuring an alternative or non-network service.⁶ Western Power is following business procurement processes in line with the ESM rules.

Alternative Option Solution Sourcing

Figure 1.5: Alternative option solution sourcing

1.2.4 Participating for future procurement events

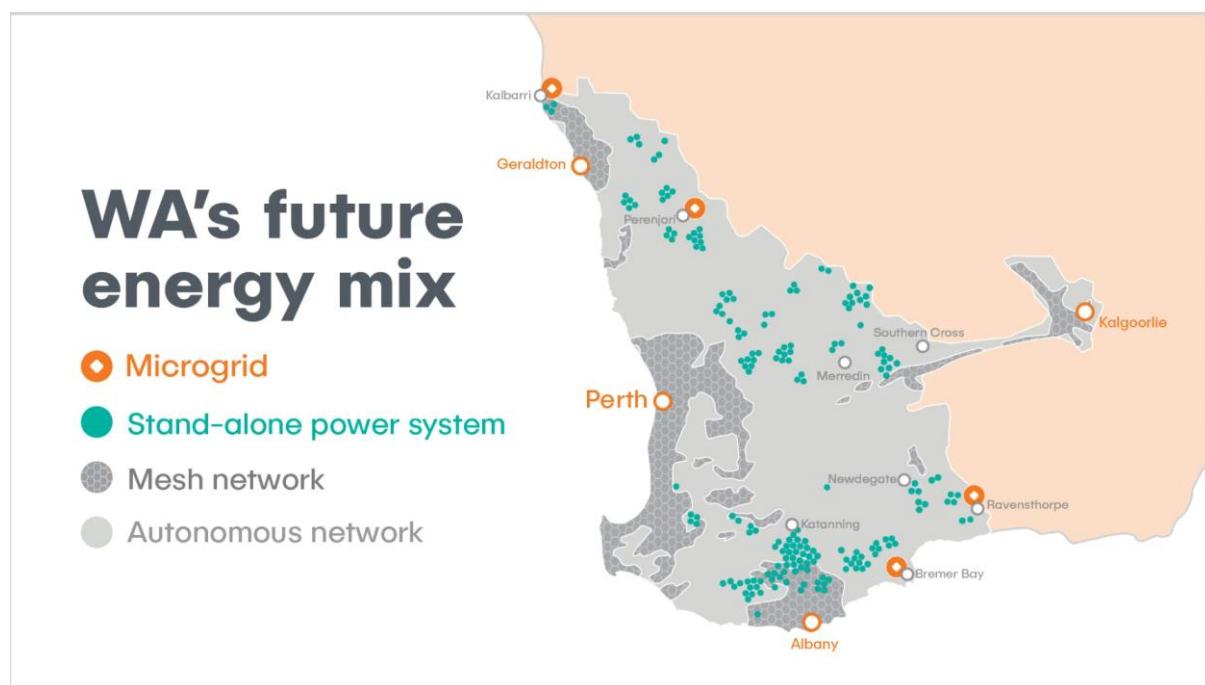
The most direct way to participate in the NOM is by filling out the vendor NOM registration form on the NOM webpage⁷. Registrations are valid for three years and used by Western Power to notify parties when a new edition of NOM is available or when a new sourcing event is published. At the end of the three-year period, vendors are invited to re-register. Whether registered or not, vendors can still respond to sourcing events of interest in line with the relevant specifications.

Figure 1.5 outlines the process from planning to when an alternative option procurement event is triggered seeking solutions from potential vendors.

The NOM provides insights into technologies being developed that may be used as alternative solutions, or to offer assistance with constraints that have not yet reached maturity.

Western Power welcomes ideas for improving the usefulness of the information contained within this document and associated NOM processes. Feedback can be provided via email – NOM.TSP@westernpower.com.au.

⁶ Non-network services are referred as Non-Cooptimised Essential System Services in the ESM Rules. For a network, these services can be procured to relieve network constraints, defer network augmentation, provide local network stability services, or address locational reliability needs.


⁷ [NOM Registration form](#)

1.3 Network of the future

Western Power is aware of changing Customer needs and the evolving technological environment. We take a forward-looking approach to provide low cost, high performing technology solutions to connect and service homes, businesses, and essential community infrastructure. With our customers not only consuming energy but also supplying energy, we're changing the way we manage our network to enable two-way energy flow. The traditional energy service business model – a network of assets that delivers electricity in a one-way flow – is no longer the norm. Networks must facilitate bidirectional flow of energy, in addition to incorporation of islanded systems, microgrids and SPS.

Western Power is embracing this changing environment and transforming how we plan, build and operate our network. Customers who are more conscious of their energy source and new technologies are also driving demand for renewable energy and non-traditional solutions.

Western Power is innovating with new solutions that have the potential to make the most of our network and better meet customer needs. The network is being transformed through adoption of new technologies where they provide better cost and reliability performance compared to traditional solutions.

Figure 1.6: Modular grid

Some of the initiatives currently being developed or are underway are detailed in the following sections. Many of these represent alternative options which have already been deployed on the network and may serve as useful examples of the type of varied solutions being sought for the emerging network constraints under the NOM.

As part of our Regional Reliability Initiative (RRI) program, a Static High Voltage Injection Unit⁸ (SHVIU) has been installed at Lancelin and another is proposed to be installed at Mullewa. Other towns with

⁸ A SHVIU is a mobile substation that provides backup generation to a community in the event of an unplanned power outage. The SHVIU is connected to several generators to power a larger area than what would normally be possible when using a standard generator

smaller customer concentration such as Lake King, Yuna and Newdegate would be more suitable for low-voltage connected microgrids because of the small size of these towns.

1.3.1 Electrification/Decarbonisation and growing Energy Demand

Electrification is the shift from non-electric energy sources to electricity in powering assets. It is being driven by government commitments of net zero by 2050 (globally) and an Australian emission reduction of 43 per cent by 2030, and associated adoption of electric end-use technologies in households, commercial and industry settings. These Government policies are driving action by industry in Western Australia and across the globe.

Over the next decade, electricity demand in Western Australia's Electricity System and Market Rules (ESM) is expected to grow steadily, driven by population growth, increased electrification (such as electric vehicles, cooking and heating), and economic activity. Recent summers have already seen record-breaking peak demand due to extreme heat events, and future peaks are expected to continue rising whilst shifting later into the evening. This change in timing reflects evolving consumption patterns, with more households and businesses using electricity well into the night.

Annual energy consumption is also projected to increase, not just during peak periods but across the year. The growing use of air conditioning during hotter months and the uptake of new technologies are contributing to this trend. While battery storage has helped meet some of the recent peak demand, the system will face challenges in maintaining reliability during extended evening peaks, especially as older coal-fired power stations retire. The forecast highlights the importance of adapting to a changing energy landscape where demand is not only increasing but also becoming more variable and weather dependent.

Decarbonisation activities include:

- Electrification of major industry such as transportation and current gas-supplied processes.
- New loads from alternative energy sources such as hydrogen and ammonia.
- Commercial and residential vehicle electrification.
- Government policy commitments including a \$1.6 billion to support Clean Energy Link (CEL) development and build.

Further information on the Network Load increase is available in the Transmission System Plan (TSP)¹.

1.3.2 Stand-alone Power Systems

Stand-alone power systems (SPS) are another major emerging technology. These off-grid systems operate independently from the main network and are provided for some rural customers. Each SPS consists of a renewable energy supply such as solar panels, battery energy storage system and a backup generator, making them completely self-sufficient power units.

At the end of FY25 321⁹ SPS units had been installed to date and Western Power continues the gradual rollout to small-use customers in regional areas. As a result of these installations, 746.3km overhead lines

⁹ As of July 2025

and 3478 poles have also been removed to date. Customers with SPS units have an overall improvement in reliability and 90 per cent of each SPS unit's energy comes from the renewable solar PV system.

1.3.3 Battery storage

Western Power's PowerBanks are community batteries with the added benefit of virtual solar storage. They allow eligible households access to virtual storage in the battery to store their excess solar power. As of August 2025, there are 17 community batteries (15 x 100kW capacity, 1 x 1000kW capacity and 1 x 2000kW capacity a total capacity of 4.5MWh. Additionally, there were 44,517 approved BTM battery applications with a cumulative storage capacity of 479MWh (96% of which is residential). Battery storage will also have an impact on energy demand forecasting, and scenarios are currently under development for future inclusion in forecasts.

The WA Residential Battery Scheme—launched in July 2025—is a landmark renewable energy initiative that enables up to 100,000 households to access battery storage through a combination of state rebates, federal subsidies, and interest-free loans. With financial incentives up to \$5,000 plus zero-interest financing and a requirement to participate- in Virtual Power Plants, the Scheme not only reduces individual energy costs but also strengthens grid resilience and accelerates Western Australia's clean energy trajectory¹⁰.

The Australian Energy Market Operators (AEMO) 2025 Wholesale Electricity Market Electricity Statement of opportunities (WEM ESOO) highlights a significant growth trajectory for battery energy storage in Western Australia's Southwest Interconnected System (SWIS). AEMO forecasts installed battery capacity to reach 1,031MW and 2,030MWh by 2034-35, underscoring the critical role of storage in supporting grid and renewable integration¹¹.

1.3.4 Microgrids

Western Power has undertaken several microgrid projects aimed at improving power reliability and supporting the transition to renewable energy. These microgrids serve as backup power sources during grid interruptions and contribute to voltage and frequency stability across the network.

Western Power's two key microgrid Projects are Perenjori Microgrid (commissioned 2018) and Kalbarri Microgrid (commissioned 2021).

Western Power has partnered with WA engineering firm Power Research and Development (PRD)¹² to develop a mini-pumped hydro facility in Walpole and connect it to the SWIS network. Construction is underway and a conditional commissioning has been completed as part of Stage 2 works of the project. Stage 3 works are yet to be scheduled. This project marks another step toward a cleaner and greener energy future by incorporating renewable generation and decarbonising communities, along with improving reliability for customers in the area.

Western Power is continuing to explore opportunities to introduce small, disconnected microgrids in rural towns through initiatives such as through the Regional Reliability Initiative (RRI) program. These microgrids would use local renewable energy to create self-sustaining, islanded power systems that don't rely on long-distance poles and wires. The rollout of multiple disconnected microgrids, along with Standalone Power

¹⁰ www.wa.gov.au/organisation/energy-policy-wa/wa-residential-battery-scheme

¹¹ 2025-wem-electricity-statement-of-opportunities.pdf AEMO | WEM Electricity Statement of Opportunities

¹² Power Research and Development – Dynamic Hydro bulk energy storage using farm dams

Systems (SPS), is expected to demonstrate the potential of modular grids in regional areas—improving both power reliability and quality for customers.

1.3.5 Project Jupiter

Project Jupiter is a three-year initiative designed to enable the continued safe and reliable integration of Distributed Energy Resources (DER) as well as the opportunity for DER to participate in new markets and services at scale. Supported by \$20.8 million in funding from the Australian Renewable Energy Agency (ARENA), the project is being delivered in partnership with Synergy, the Australian Energy Market Operator (AEMO), and Energy Policy WA.

Project Jupiter will accelerate the implementation of virtual power plants across the South West Interconnected System (SWIS). It will deliver the technical systems, market frameworks, customer products, engagement tools, and policy and regulatory settings needed to support the coordinated operation of rooftop solar, customer batteries, and community batteries as VPPs.

When aggregated in a VPP, customer energy assets can provide capacity and network support services, while also delivering greater value to participating customers. This supports a more stable, reliable, and decarbonised grid.

Western Power’s Network Support Services (NSS) product will continue to evolve through Project Jupiter, with a focus on developing integrated systems between Western Power, the market operator, and aggregators to support a higher volume of services.

As the program progresses, technical, customer, value creation, and policy insights will continue to emerge. Industry and community stakeholders can access these learnings via the ARENA Project Jupiter webpage¹³.

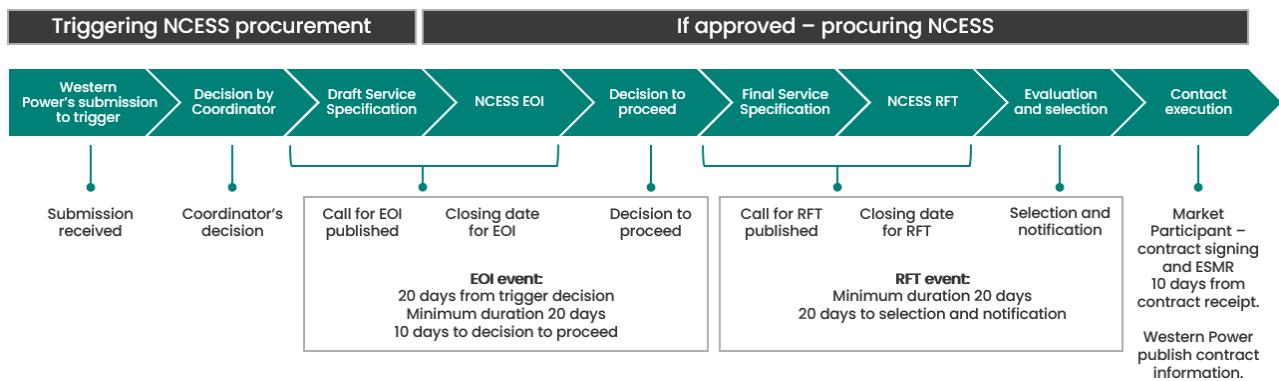
The first milestone of the program is now complete, with the release of two key knowledge-sharing reports. The Vision and Impact Pathway outlines a stakeholder-informed vision and maturity framework for scalable DER integration. The National Alignment Report shows how Project Jupiter aligns with national Consumer Energy Resource (CER) Roadmap activities and can support greater harmonisation.

Together, our Distribution System Operator capabilities and broader DER integration initiatives are helping to build a smarter, more flexible electricity system, one that ensures customer-owned DER is safely connected, visible, compliant, and able to participate in new energy markets.

1.3.6 Electric vehicles

There were an estimated 38,000 EVs registered in Western Australia as at the end of June 2025, making up 1.58 per cent of registered light vehicles in Western Australia¹⁴. This represents a significant increase in EV adoption, with growth in both Battery Electric Vehicles (BEVs) and Plug-in hybrid Electric Vehicles (PHEVs). The ESM is expected to experience a massive uptake of electric vehicles in the coming decades and under the CSIRO’s progressive growth scenario this number would increase to 590,000 by FY2034/35.

¹³ <https://arena.gov.au/projects/project-jupiter/>


¹⁴ Source: Government of Western Australia Department of Transport, Western Australian Electric Vehicle Analysis Summary, March 2025. Includes PHEV and BEV

1.4 Network Support Services

Western Power continues to evolve how Network Support Services are identified and procured as part of our transition to a Distributed System Operator (DSO). The Network Opportunity Map (NOM) plays a central role in this, providing a transparent view of emerging network needs.

This year, around 20 opportunities identified in the NOM have been progressed through the existing non-co-optimised Essential System Services (NCESS) framework, as shown in the figure below. While this process has required significant manual input, it has successfully led to the procurement of providers to deliver network support services.

Automating NSS Procurement & Engagement Current Process

Western Power has begun automating parts of the process with the launch of a digital solution. This first release is an interim solution which will reduce some of the manual handling of the existing process and make it easier for participants to engage with us and respond to NCESS opportunities.

From 2026, the process will become more automated and enable NSS suppliers to engage with opportunities as part of a more regular, streamlined approach. We've already moved from testing just 2–5 services with an aim of progressing up to 20 to market this year.

By 2028, the goal is for all opportunities in the NOM to be visible and open for tender through an 'always-on' platform.

We'll also be increasing our engagement with market participants throughout this year and into 2026. If you're already registered for updates, you'll receive invitations directly. If not, you can [register your interest](#) on our website.

2. Transmission network

2.1 Transmission regions

The Western Power network covers the area from Kalbarri in the north to Albany and Bremer Bay in the south and from Kalgoorlie in the east to the metropolitan coast.

The network has been segmented into six geographic regions for the purposes of network planning. Dividing networks into regions is designed for ease of network planning as these regions can share similar load characteristics and network issues.

Figure 2.1 provides an illustration of the geographic boundaries between regions, with three regions covering the metro area and three regions covering the remaining country parts of the SWIS.

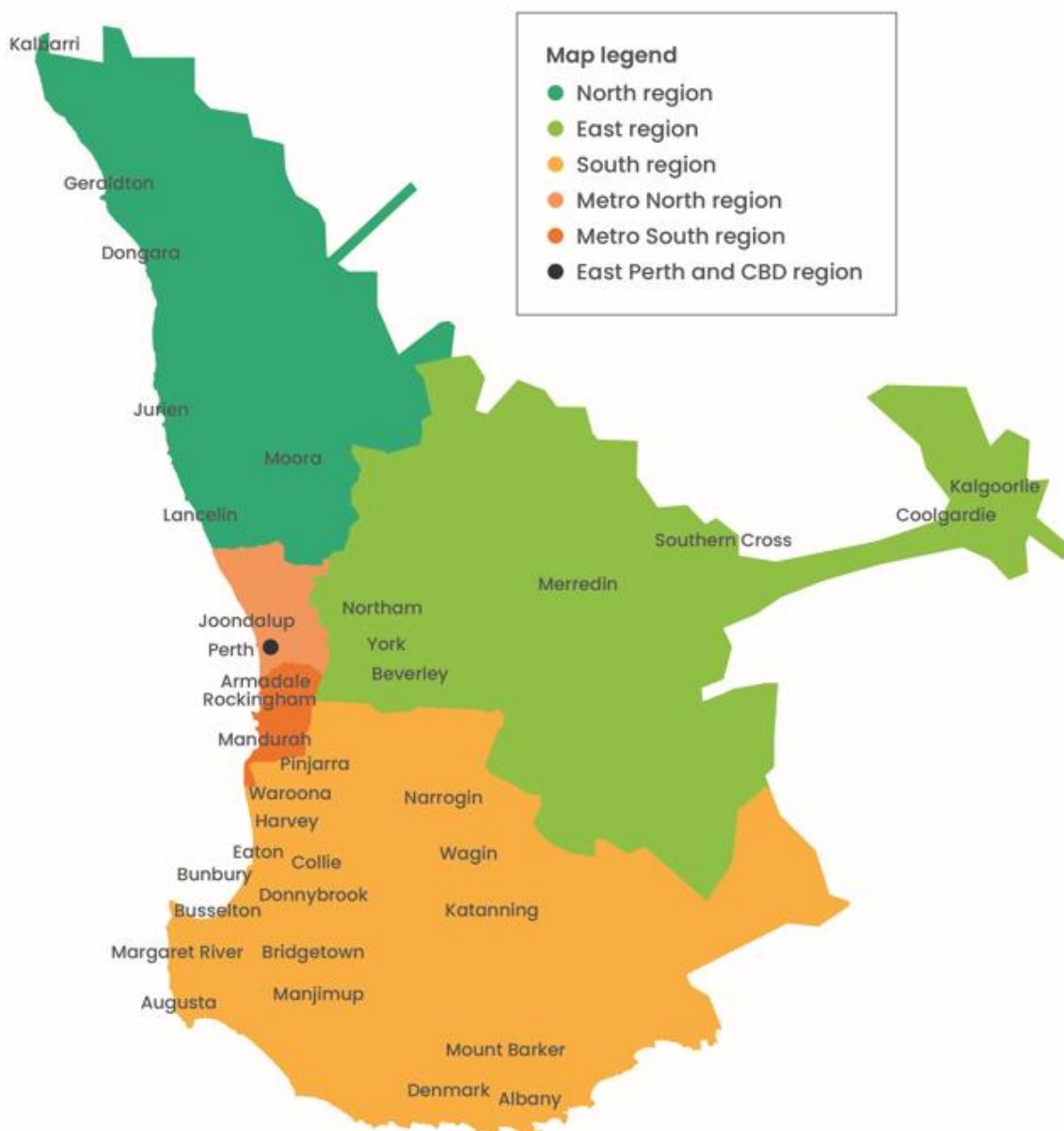


Figure 2.1: Western Power's transmission network regions

2.2 Transmission System Plan

The Transmission System Plan (TSP) is an obligation for Western Power under section 4.5B of the ESM rules and will be published on the Western Power website.

The purpose of the TSP is to present a 10-year forward plan for investment in the transmission network to deliver low-cost, safe, secure and reliable energy to consumers while operating within an increasingly complex and dynamic energy landscape. The TSP sets out potential investment opportunities, including alternatives to network augmentation, to alleviate identified network constraints and to maintain power system security and reliability on the South West Interconnected System (SWIS) transmission network over a 10-year time horizon, while maximising the long-term interests of consumers.

The TSP 2025 covers the 2025/26 to 2035/36 planning horizon to enable alignment with Western Power's latest demand forecast¹⁵ outlook and maintain continuity with existing network planning activities.

2.3 Interaction between the TSP and NOM

The NOM is a regulatory requirement for Western Power outlined in chapter 6A of the Access Code, published together annually with the TSP.

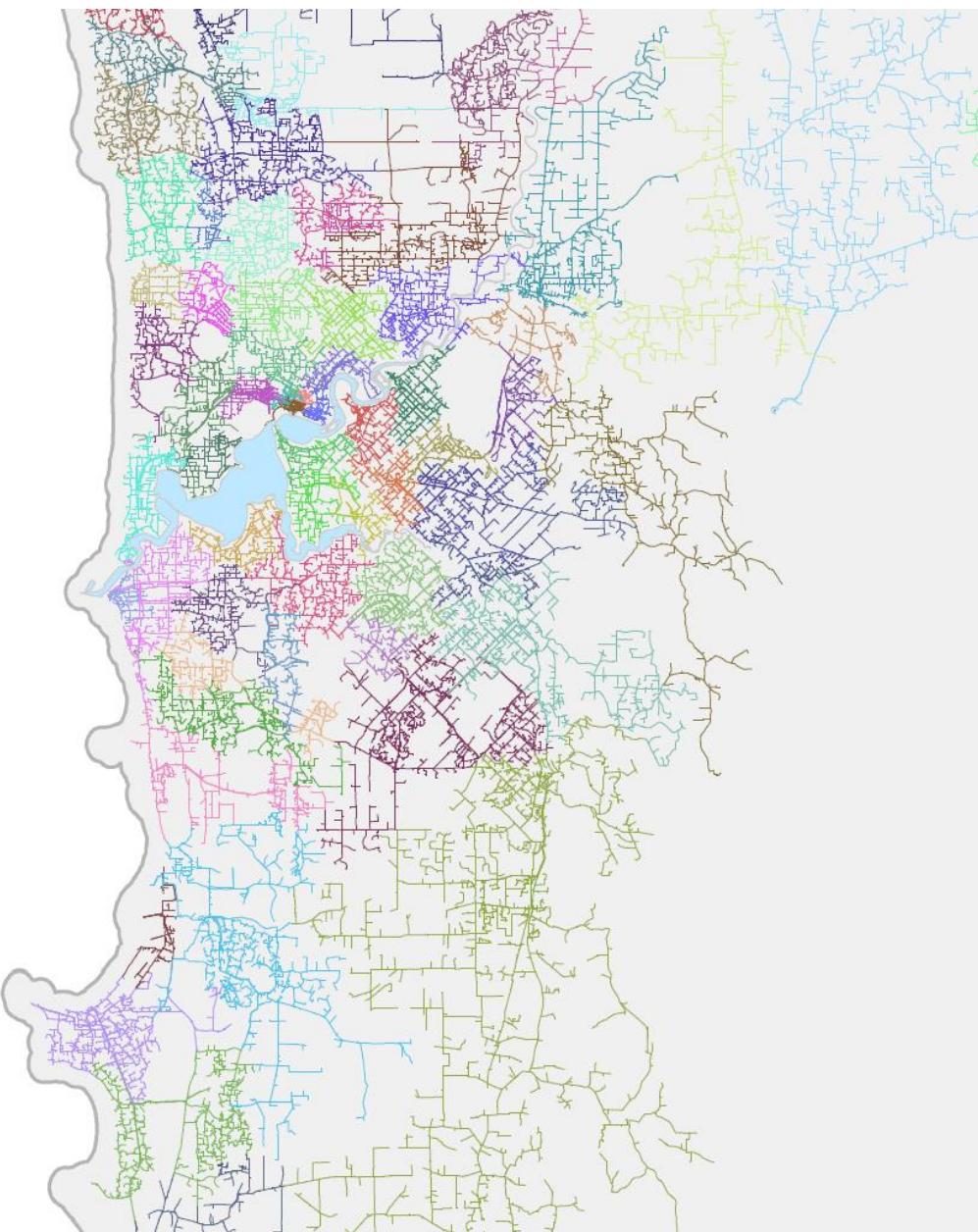
The primary purpose of the NOM is to present network opportunities to providers of potential alternative options on both the distribution and transmission system within the five-year horizon, with opportunities on the transmission system limited to network constraints at the zone substation level.

A network opportunity is the presentation of opportunities to providers of potential alternative options (all customers, industry, and market participants) to address transmission and distribution system constraints by providing alternative options to network augmentation.

2.4 Zone substation loading - historical and forecast performance

Information related to the Zone Substation Loading for the period 2025/26 to 2035/36 will be available in the Transmission System Plan¹.

2.5 Transmission network opportunities


Information related to transmission network opportunities will be available in the Investment Plan 2025 document¹.

¹⁵ Current demand forecasts were produced in 2025, looking forward from the period 2025/26 to 2035/36

3. Distribution network

Western Power's distribution network complements its transmission network and associated zone substations, providing the capillary system that delivers energy to most of our customers. The network operates at voltages below 66kV, with voltages above 1kV often referred to as medium voltage¹⁶ (MV) and those below 1kV as low voltage (LV). A distribution transformer is the voltage step down interface between the MV and LV network. The MV and LV networks have different risk and constraint profiles and can look very different geographically depending on the density of connections and distances between neighbouring feeders and zone substations.

Figure 3.1: A section of Western Power's MV distribution network in the Perth metro area

¹⁶ May also be referred to as HV distribution voltage.

3.1 Challenges

The recent summer 2024/25 was considered a reasonably hot summer that was somewhat similar to that of the previous summer 2023/24. Since the summer of 2021/22, when heatwaves resulted in consecutive days of 40°C or more over the Christmas period and triggered extreme heat related peak demand, significant network upgrades have taken place reducing pressure on LV and MV networks.

To minimise network risk from high demand days, Western Power continues to expedite high priority capacity works to meet the projected demand for summer 2025/26 and 2026/27.

Projected overutilisation with respect to target planning limits on MV and LV networks in future years is expected, with some of these being indicated as potential future opportunities in Section 3.4 for the provision of alternative solutions, as it is foreseen that the impact of climate driven heatwaves and decarbonisation activities driving electrification will continue to drive higher maximum demand and require future capacity mitigation.

In addition, the advance of new technologies creates opportunities against traditional network models, primarily connected to the distribution network. Under certain conditions, the distribution network has now become the largest generator on the grid, with embedded PV outperforming other individual generators' output.

The WA Government's ETS and Energy Transformation Taskforce have provided clear priority to network transformation to accommodate and support these technological advances. The Distributed Energy Resources (DER) Roadmap sets out goals and targets to manage future increased penetration of DER such as residential PVs, energy storage and electric vehicles on Western Power's network.

Western Power's intent to move toward a modular network not only helps to address the above DER challenges but also assists with replacing the ageing distribution network and improving customer reliability performance. More about these initiatives can be found in Section 1.3 and via associated links.

Further information about asset management challenges can be found in Appendix B.2.

3.2 Distribution network performance strategies

Distribution performance strategies are developed to guide Western Power's network investments to accommodate future customer requirements. The five strategies described here have very strong relationships between each other and have been the strategic cornerstone for some time.

3.2.1 Feeder loading

Western Power has an obligation to deliver energy safely and reliably to our customers under all credible scenarios, while ensuring efficient and cost-effective use of any assets. This is achieved by ensuring the assets are fit for purpose at the time of design and installation, and that they are maintained and operated in accordance with their specifications throughout their useful life. Exceeding ratings can significantly increase maintenance costs for an asset, and at times precipitate early failure and impact reliability.

3.2.2 Feeder voltage

Western Power is required to operate and maintain its network within prescribed voltage limits outlined in the TR¹⁷. A range of voltages are used across the network to distribute electricity, selected to maximise efficiency, and minimise cost in scenarios such as long distances or anticipated levels of demand and generation. As network use changes, it may be necessary to adapt the network topology and operating voltages to ensure continuing reliability, efficiency and cost effectiveness.

3.2.3 Power quality

Power quality addresses the voltage, frequency and waveform characteristics of the electricity supply from the network to our customers. Examples of common power quality problems are harmonic distortion, voltage instability and voltage imbalance. A strategy is in place to manage voltage within limits is outlined in Section 3.2.2. Frequency management is the responsibility of AEMO and is not addressed in this strategy.

3.2.4 Reliability

Distribution networks are designed and built to provide a level of service which meets defined performance requirements across the system. Reliability qualifies that level of service and quantifies it in terms of availability of the electricity supply to customers, expressed mainly as supply interruption duration, frequency, and number of impacted customers. For more on the definition of reliability criteria, refer to the NQRS Code, Service Standard Benchmark (SSB) and TR, as well as Section 3.3.2 in this document.

3.2.5 Protection

Faults in the network have the potential to injure people and damage the environment, property, equipment or community assets. Protection systems detect faults through continuous monitoring of network conditions and clear them by de-energising faulted equipment. The downside of this is an interruption of supply to customers. As a result, protection systems are optimised to operate only when required and allow for the fastest possible restoration of safe supply.

3.3 Performance measures

Several of the distribution network performance measures related to the strategies above are being developed to accommodate changes driven by ETS and to provide more meaningful indicators to third parties. Only two established performance measures, feeder loading and reliability, are described in further detail below.

3.3.1 Feeder loading

There are two distribution feeder types based on the voltage level:

- MV feeder, or
- LV feeder

The distribution transformer (DSTR) is the voltage step down interface between the MV and LV network and is considered the beginning of the LV feeder.

¹⁷ [Technical Rules](#)

Target MV feeder loading levels are dependent on the type of load being supplied, and the number of interconnections with contiguous MV feeders. Higher MV feeder loading can mean better utilisation of an asset but can also reduce reliability due to difficulties in finding alternative supply in case of an outage. Because of this, MV feeder loading can have a significant impact on both MV feeder utilisation and reliability performance.

MV feeder load fluctuates throughout the day, becoming more apparent during cloudy days as customer installed PV systems' output fluctuates. Western Power is expected to plan the grid to support the load when there is no PV output, while considering the correlation between demand and weather, and maximising the day-to-day utilisation of any assets.

Maximum peak MV feeder loading generally occurs on the Western Power network in summer when there is large demand for air conditioning in the evening with no offset from solar PV. MV Feeder peaks are chiefly driven by residential cooling loads that only occur for a number of hours per year – between 3% and 5% of the year in total.

A MV feeder's loading performance measure is shown as utilisation percentage, representing the ratio of the expected peak MV feeder load divided by the MV feeder's capability. The MV feeder's utilisation target depends on the number of MV network interconnections. In urban areas where the majority of residentially driven summer peak loads are experienced, an assumption is made that each urban MV feeder has at least four interconnections with other urban MV feeders, enabling multiple alternative paths to supply restoration in the event of a credible outage. This results in an optimum MV feeder utilisation target of 80% for MV feeders supplying urban communities.

More data on urban feeder loading performance is available in the Network Data link on the NOM webpage, under Distribution Feeder Utilisation.

The LV network is typically constrained by the distribution transformer, interfacing between the MV feeder and LV network. In comparison to a MV feeder, a LV network supplies significantly fewer number of customers being the final point of connection.

A MV feeder will supply a number of LV networks, and during the feeder peak many LV networks will also be at their peak. There are differences in the demand characteristics between the LV networks and the MV feeder is known as load diversity.

Some data on selected +400 distribution transformer performance is available in the Network Data link on the NOM webpage, under Distribution Transformer Opportunities.

Feeder Loading Investment Triggers

When considering investments to address high MV feeder loading, a balance is sought to ensure Western Power doesn't over-invest in the grid based on projections of maximum MV feeder loadings as it is unlikely that a fault will occur at the precise peak load time for that MV feeder. Traditional network augmentation that increases MV feeder capacity results in lower MV feeder utilisation levels at other times of the year (up to 97%) and presents a low return on investment value. In addition, the projected load is an estimate only and may not eventuate, posing further risk in the form of constructing underutilised stranded assets.

To mitigate these network investment risks and ensure prudent network investments are made to manage high MV feeder utilisation, a deterministic individual feeder approach is not always used. Instead, an approach that involves assessing the trend in network risk from the projected utilisation is

applied, typically this considers all feeders supplied from the same ZSS. If the network risk is reducing over time, Western Power investigates alternatives that can defer the need for investment. An example of such a measure is 'network switching' to an adjacent underutilised MV network to balance overall MV feeder utilisation in an area.

When a switching option is not available and projected network risk is expected to increase, a MV feeder loading investment is triggered. This typically occurs when the contiguous MV feeders are supplying similar customer types with no diversification in load response to weather events – for example, all the contiguous MV feeders have a very high percentage of residential load which has a similar response to hot weather patterns.

Western Power monitors high MV feeder loads on MV feeders that supply urban residential communities at large multi-staged land developments. These high load events occur in the evening, as these areas usually also have significant PV penetration supplementing their cooling consumption during daylight hours. The top half of Table 3.1 summarises triggers for MV feeder loading investments, the impact of not addressing risks, and an example of how Western Power would traditionally proceed to manage network capacity risk.

Table 3.1: Feeder loading investment summary

Investment trigger	What is the issue?	When does it occur?	Potential impact if not addressed	Traditional network solution?
Feeder loading (MV Network thermal overload)	MV network capacity rating exceeded due to load growth (from new or increased demand)	Typically, during maximum peak load (5-8pm). Seasonal variation depending on location (Winter / Summer peak)	<ul style="list-style-type: none"> Equipment failure Accelerated asset aging and increased maintenance costs Increased safety risk due to clearance issues (excessive overhead MV conductor sag etc) 	<ul style="list-style-type: none"> Installation of new MV feeders or feeder interconnections Transfer of load to contiguous underutilised MV networks Conversion of existing overhead MV conductor to higher thermal capacity underground cable
Feeder loading (LV Network thermal overload)	LV network capacity rating exceeded due to load growth (from new or increased demand)	Typically, during maximum peak load (5-8pm). Seasonal variation depending on location (Winter / Summer peak)	<ul style="list-style-type: none"> Equipment failure and loss of customer supply Accelerated asset aging and increased maintenance costs 	<ul style="list-style-type: none"> Installation of new or higher rated distribution transformer Transfer of load to contiguous underutilised LV networks Conversion of existing overhead LV conductor to higher thermal capacity underground cable

When considering investments to address high LV feeder loading, a deterministic approach is taken because if the equipment fails there is generally no additional capacity in the LV network under peak load conditions compared to the MV network. LV switching is generally the only alternative and typically will have already been applied to optimise the LV configuration before triggering network investment in upgrading or installing a new distribution transformer. The bottom half of Table 3.1 summarises triggers for LV feeder loading investments, the impact of not addressing risks and an example of how Western Power would traditionally proceed to manage network capacity risk.

3.3.2 Reliability

Reliability of supply is a key measure of the service Western Power provides to customers connected to our grid. The reliability standards and method of calculation are determined by the ERA. The level of reliability service is quantified in terms of availability of electricity supply to customers and is expressed as supply interruption duration and frequency.

The two primary measures used for reliability performance on the distribution network are:

- System Average Interruption Duration Index (SAIDI), which includes all network outages (minutes per year) for the distribution network; and
- System Average Interruption Frequency Index (SAIFI), which includes all network outages (number of interruptions per year) for the distribution network.

SAIDI and SAIFI are directly linked to regulatory compliance by the requirement for performance to remain on average at the SSB, and either financial rewards or penalties for Western Power for reliability performance better or worse than the SSB, applied from the Service Standard Adjustment Mechanism (SSAM). For more information, refer to the latest version of the AA5¹⁹.

As feeders possess differing characteristics, the distribution network is divided into four feeder categories used for monitoring reliability performance. These end up being broadly geographically based and are consistent with the measures used by other Distribution Network Service Providers (DNSP) in Australia. The following table summarises the four distribution feeder categories Western Power uses.

Table 3.2: Distribution feeder categories for reliability

Feeder category	Definition
Perth CBD	A feeder supplying predominantly commercial, high-rise buildings, supplied by a predominantly underground distribution network containing significant interconnection and redundancy when compared to urban areas.
Urban	A feeder which is not a CBD feeder, with actual maximum demand across the reporting period per total feeder route length greater than 0.3 MVA/km.
Rural Short	A feeder which is not a CBD or Urban feeder, with a total route length less than 200 km.
Rural Long	A feeder which is not a CBD or Urban feeder, with a total route length greater than 200 km.

This results in SAIDI and SAIFI reliability SSBs against each of the four feeder categories set out by the regulator at the beginning of each AA. Western Power is currently in its fifth AA (AA5)¹⁸ which ends in the 2026-27 financial year. For the first year of AA5 (2022-23 financial year) the reliability performance benchmarks remain the same as the AA4 arrangement; from the 2023-24 financial year onwards, new performance benchmarks have been finalised by the ERA and shown in the following table.

Table 3.3: Minimum reliability performance

Measure	Feeder category	SSB for FY2024-25 and each financial year thereafter
SAIDI	CBD	13.7
	Urban	123.8
	Rural Short	202.5
	Rural Long	290.0
SAIFI	CBD	0.21
	Urban	1.25
	Rural Short	2.09
	Rural Long	4.45

Due to the averaging nature of the SSB over the duration of the Access Arrangement period, some individual feeders may perform below the average while others perform above. This balances the overall performance of the network and while the SSB for a particular feeder category might be met at the end of

¹⁸ [Approved-Access-Arrangement.PDF \(erawa.com.au\)](Approved-Access-Arrangement.PDF (erawa.com.au))

the Access Arrangement period, some customers may repeatedly experience below average reliability during this cycle.

Feeder reliability investment triggers

Western Power seeks to invest in the grid where economically viable, in a way that maintains performance at SSB requirements while targeting specific locations where reliability experience has been consistently below average.

If customer density is high or close to a zone substation, additional feeders and feeder interconnections may be an economical way to deliver improved reliability. However, where poor reliability performance is a recurring problem due to long radial overhead networks providing supply through environmentally challenging areas prone to high winds or bushfire risk, traditional network solutions are becoming increasingly uneconomic and impractical to service. A major change in network topology is justified to enable generation to be closer to the load, bypassing the long radial overhead network which is prone to both transient and longer duration outages.

The following table summarises common triggers for feeder reliability investments, the impacts when not addressed, and examples of how they are addressed through traditional network solutions.

Table 3.4: Reliability investment summary

Investment trigger	What is the issue?	When does it occur?	Potential impact if not addressed	Traditional network solution?
MV & LV network reliability	A fault event 'upstream' causing an outage and loss of supply to a customer or a group of customers.	Events can be random but most commonly occur seasonally, during periods of extreme weather, or at locations susceptible to unfavourable environmental conditions (i.e., saline or dust pollution, heavy vegetation or smoke).	<ul style="list-style-type: none">Customers without supply until issue is cleared and power restoredReliability impact, which can pose financial penalties and/or reputational damage.	<ul style="list-style-type: none">MV and/or LV network re-configurationInstallation of MV or LV feeder interconnectionsReplacement of bare overhead conductor with covered conductor or underground cableAdditional distribution automationImproved condition monitoring and diagnostics for proactive identification of network issuesMV or LV emergency response generators.

3.4 Identified opportunities

3.4.1 MV feeder loading

Western Power assesses MV feeder utilisation per zone substations across our network annually. From the NOM 2023, six network priority locations were identified and there are plans for

reinforcement with network options with network options: Henley Brook (HBK), Padbury (PBY), Waikiki (WAI), Picton (PIC), Marriot Road (MRR) and Bunbury Harbour (BUH).

From last years' NOM 2024, an additional seven network priority locations have been identified with reinforcement plans underway through targeted network options with network options: Busselton (BSN), Landsdale (LDE), Manning Street (MA), Morley (MO), Muchea (MUC), North Perth (NP) and Osbourne Park (OP). Additional single select feeders from substations Capel (CAP), Cockburn Cement (CC), Joondalup (JDP), Muchea (MUC), Northam (NOR), Sawyers Valley (SVY) and Wanneroo (WNO) have also been addressed with network solutions. Transmission driven work has resulted in one location having MV feeder reinforcement work through network options: Wangara (WGA).

All network options are intended to provide network capacity for at most five years from project initiation, this ensures Western Power doesn't overcommit to network solutions, as demand may not materialise and because Western Power is aware in the near future Network Support Services will become available to efficiently assist in mitigating network issues experienced during the relatively short periods of maximum and minimum demand.

As the current Network Support Services market is still developing, Western Power has taken market feedback into account to allow for the time required to establish and deliver new non-network solutions. The approach for the High Priority Network projects is to concentrate on network investments to be delivered in the immediate term (i.e. 1-2 years) with non-network opportunities flagged beyond this timeframe. Hence these 'High Priority Network' locations have been indicated to be 'No Current Opportunity' for Non-Network solutions at present. As we move down the Priority Network needs, 'Emerging Opportunities' for Non-network solutions materialize. Priorities are evaluated annually, and changes are expected each year due to the dynamic nature of the distribution network, environmental forecasts, and customer demand. As the market evolves and matures, Western Power will continue to review and adjust this approach.

The Developing market for Network Support Services

Western Power is committed to supporting the developing market for Network Support Services and is seeking to provide full transparency of current and emerging market opportunities. In this period of market development, Western Power must balance the need to both support the maturing market and manage the capacity risk across the network.

The business' balanced approach to meet this intent is to:

1. Provide visibility of current and emerging market opportunities (via this document)
2. Commit to network solutions where there is significant risk of capacity shortfalls on priority feeders in the immediate term
3. Commence a pilot of potential sites taking into account the lead-times required to develop a NSS solution, and it is evident that significant DER technologies are connected to the network with the potential for orchestration.

Western Power intends to build upon the pilot by offering further opportunities next year based upon the current and emerging opportunities and updated forecasts outlined in this document.

Further information regarding the current pilot sites

Western Power is currently running a pilot on MV feeders that had been identified NOM 2025 publication as opportunities to also pilot the new non-co-optimised Essential System Services (NCESS) framework to procure and assess localised Network Support Services for individual MV feeder performance.

These MV feeders were identified based on Western Power's assessment of the underlying need, technical requirements and likelihood of viable Network Support Services solutions at the time of the selection process and have been chosen from the substations listed below.

Feeder data for these pilot MV feeders can be found in the linked network data sheet on the NOM webpage, and the NCMT can be used to view the feeder location.

More generally, the investigation of a potential network feeder augmentation always considers alternative solutions such as a dedicated non-network solution or a hybrid between non-network and traditional network solutions. All opportunities vary in locational peculiarities, however the common factor for all solutions is the ability to reduce the overall peak in network peak demand, preferably shifting the peak into the high PV output portion of the day. All the solutions are comprehensively assessed, evaluating their technical, economical and deliverability characteristics before the best option is selected.

Visibility of current and emerging market opportunities

The refreshed NOM 2025 MV feeder opportunities table identifies the previous NOM 2023 and NOM 2024 network option ZSS feeders as 'Projects in Progress' in the 'Opportunity Candidate' column. It is envisaged that the projects currently in progress will balance and reduce all MV feeder utilisation of the aforementioned zone substations to 'Target Utilisation' levels after the planned completion date which will then be reflected in this table. This is envisaged as being before summer 2026/27 for the NOM 2023 locations, and summer 2027/28 or later for the NOM 2024 locations.

Further opportunities on the same MV feeders could still occur in the future if maximum demand increases faster than the applied five-year forecast. This forecast includes the potential future residential EV impact to maximum demand.

After assessing the latest available demand projections against the target planning utilisation limits, the following ten metropolitan zone substations were identified as areas with Priority Network needs:

1. **Medina (MED)** 'High Priority Network | No Current Opportunity due to Committed Project'
2. **Wanneroo (WNO)** 'High Priority Network | No Current Opportunity due to Committed Project'
3. **Bibra Lake (BIB)** 'High Priority Network | No Current Opportunity due to Committed Project'
4. **Hazelmere (HZM)** 'Medium Priority Network | Good/Current opportunity'
5. **Yokine (Y)** 'Medium Priority Network | Good/Current opportunity'
6. **Riverton (RTN)** 'Medium Priority Network | Good/Current opportunity'

7. **Collier (COL)** 'Medium Priority Network | Good/Current opportunity'
8. **Arkana (A)** 'Medium Priority Network | Good/Current opportunity'
9. **Joel Terrace (JTE)** 'Medium Priority Network | Emerging Opportunity'
10. **Gosnells (G)** 'Medium Priority Network | Emerging Opportunity'

After assessing the network risk, the projected over-utilised MV feeders will trigger a network investigation to identify the potential options to manage any overutilisation issue, concluding with an outline of the required solution.

The MV feeders of the top 10 Priority Networks listed above are shown in Table 3., and are typical of highly utilised Western Power MV feeders, usually supplying large residential subdivisions that also have high levels of PV penetration (and an expectation for further increase in solar PV). The large proportion of residential customers results in an evening peak in summer, mainly driven by undiversified air-conditioning load.

Table 3. indicates the projected MV feeder's utilisation, the present customer segment breakdown and an estimated amount of solar PV installed. Additional urban feeder loading can be found in the linked network data sheet on the NOM webpage.

Table 3.5: Anticipated distribution MV feeder utilisation at top 10 metropolitan ZSS

LEGEND		
	High Utilisation	above 80%
	Target Utilisation	>40% & <80%
	Low Utilisation	below 40%

Good/Current Opportunity Candidate: Strong chance of engaging NSS for feeder over-utilisation mitigation.

Emerging Opportunity Candidate: Emerging chance of engaging NSS for feeder over-utilisation mitigation.

No Current Opportunity due to Committed Project: Low chance of engaging NSS for feeder over-utilisation mitigation.

ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Existing Customer Segment				Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
			Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)				
Arkana	A 502		94%	6%	0%	N	2,810	18%		
Arkana	A 503		95%	5%	0%	N	3,364	16%	GOOD/CURRENT OPPORTUNITY	5,979
Arkana	A 505		94%	6%	0%	N	3,288	20%		
Arkana	A 506		95%	5%	0%	N	4,785	24%	GOOD/CURRENT OPPORTUNITY	2,223
Arkana	A 510		90%	10%	0%	N	2,009	19%		
Arkana	A 511		96%	3%	0%	N	3,108	21%		
Arkana	A 513		52%	47%	1%	N	1,214	15%		
Arkana	A 514		97%	3%	0%	N	5,193	31%	GOOD/CURRENT OPPORTUNITY	1,535

¹⁹ Residential EV and projected utilisation is prior to investment.

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Bibra Lake	BIB 504		94%	6%	0%	N	2,521	25%	No Current Opportunity due to Committed Project	
Bibra Lake	BIB 505		89%	10%	0%	N	5,734	44%	No Current Opportunity due to Committed Project	
Bibra Lake	BIB 507		97%	3%	0%	N	7,059	42%	No Current Opportunity due to Committed Project	
Bibra Lake	BIB 508		0%	98%	2%	N	2,212	12%	No Current Opportunity due to Committed Project	
Bibra Lake	BIB 536		87%	12%	0%	N	3,487	43%	No Current Opportunity due to Committed Project	
Bibra Lake	BIB 537		57%	43%	0%	N	1,394	26%	No Current Opportunity due to Committed Project	
Bibra Lake	BIB 539		91%	9%	0%	N	8,348	38%	No Current Opportunity due to Committed Project	
Bibra Lake	BIB 540		97%	3%	0%	N	3,968	39%	No Current Opportunity due to Committed Project	
Collier	COL 304		93%	7%	0%	N	1,928	24%		
Collier	COL 305		90%	9%	1%	N	227	19%		
Collier	COL 307		87%	13%	0%	N	825	20%	GOOD/CURRENT OPPORTUNITY	1,332

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Collier	COL 308		76%	23%	0%	N	799	24%		
Collier	COL 316		94%	6%	0%	N	1,376	17%		
Collier	COL 317		93%	7%	0%	N	2,110	28%	GOOD/CURRENT OPPORTUNITY	1,122
Collier	COL 326		93%	6%	1%	N	1,855	30%		
Collier	COL 327		91%	9%	1%	N	1,621	23%	GOOD/CURRENT OPPORTUNITY	1,553
Collier	COL 335		93%	7%	0%	N	2,727	34%	GOOD/CURRENT OPPORTUNITY	412
Collier	COL 337R		92%	8%	0%	N	1,961	19%	GOOD/CURRENT OPPORTUNITY	854
Collier	COL 339		95%	5%	0%	N	3,031	34%	GOOD/CURRENT OPPORTUNITY	1,399
Collier	COL 340		91%	9%	0%	N	1,464	30%		
Gosnells	G 502		87%	12%	1%	N	3,438	28%		
Gosnells	G 504		90%	9%	0%	N	5,628	32%	EMERGING OPPORTUNITY	2,043
Gosnells	G 506		98%	2%	0%	N	7,609	49%	EMERGING OPPORTUNITY	2,606
Gosnells	G 508		93%	7%	0%	N	3,362	35%		
Gosnells	G 514		97%	3%	0%	N	8,275	40%	EMERGING OPPORTUNITY	3,006
Gosnells	G 515		94%	6%	0%	N	6,708	45%	EMERGING OPPORTUNITY	2,903
Gosnells	G 518		97%	3%	0%	N	5,091	42%		
Gosnells	G 520		86%	13%	1%	N	1,949	28%		

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Gosnells	G 522		95%	5%	0%	N	3,394	33%		
Hazelmere	HZM 504		96%	4%	0%	N	4,945	55%	GOOD/CURRENT OPPORTUNITY	382
Hazelmere	HZM 505		84%	15%	2%	N	3,069	48%	GOOD/CURRENT OPPORTUNITY	354
Hazelmere	HZM 507		95%	4%	0%	N	7,780	51%	GOOD/CURRENT OPPORTUNITY	3,482
Hazelmere	HZM 508		N/A	N/A	N/A	N	N/A	N/A		
Joel Terrace	JTE 302F		81%	18%	1%	N	255	8%		
Joel Terrace	JTE 302R		85%	14%	1%	N	196	1%	GOOD/CURRENT OPPORTUNITY	2,401
Joel Terrace	JTE 304R		90%	9%	1%	N/A	595	20%		
Joel Terrace	JTE 306R		80%	19%	1%	N	33	0%		
Joel Terrace	JTE 307F		90%	9%	1%	N	132	0%		
Joel Terrace	JTE 310R		86%	14%	0%	N/A	848	12%		
Joel Terrace	JTE 312R		91%	9%	0%	N/A	1,401	16%	EMERGING OPPORTUNITY	74
Joel Terrace	JTE 315F		76%	23%	1%	N	151	2%	EMERGING OPPORTUNITY	1,519
Joel Terrace	JTE 321F		78%	21%	1%	N	1,618	11%	EMERGING OPPORTUNITY	1,712
Joel Terrace	JTE 323F		82%	17%	1%	N	1,346	16%	EMERGING OPPORTUNITY	1,918
Joel Terrace	JTE 325F		89%	11%	0%	N	1,286	15%	EMERGING OPPORTUNITY	577
Joel Terrace	JTE 325R		90%	10%	0%	N	10	1%		

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Joel Terrace	JTE 327F		61%	38%	1%	N	91	3%		
Joel Terrace	JTE 330F		92%	7%	0%	N	1,938	14%	EMERGING OPPORTUNITY	1,187
Joel Terrace	JTE 332F		66%	33%	1%	N	641	4%		
Joel Terrace	JTE 335F		78%	21%	1%	N	356	6%	EMERGING OPPORTUNITY	339
Joel Terrace	JTE 335R		76%	22%	1%	N	5	1%		
Joel Terrace	JTE 337F		94%	6%	0%	N	1,705	19%	EMERGING OPPORTUNITY	410
Joel Terrace	JTE 337R		77%	19%	4%	N	150	1%		
Medina	MED 504		0%	94%	6%	N	632	19%	No Current Opportunity due to Committed Project	
Medina	MED 507		95%	4%	0%	N	5,189	47%	No Current Opportunity due to Committed Project	
Medina	MED 508		95%	5%	0%	N	5,649	42%	No Current Opportunity due to Committed Project	
Medina	MED 511		97%	3%	0%	N	6,469	47%	No Current Opportunity due to Committed Project	
Medina	MED 513		97%	3%	0%	N	6,937	53%	No Current Opportunity due to Committed Project	
Medina	MED 517		0%	100%	0%	N	894	33%	No Current Opportunity due to Committed Project	

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Medina	MED 522		89%	11%	0%	N	5,322	27%	No Current Opportunity due to Committed Project	
Medina	MED 524		96%	3%	0%	N	6,980	44%	No Current Opportunity due to Committed Project	
Medina	MED 526		93%	7%	1%	N	6,453	48%	No Current Opportunity due to Committed Project	
Riverton	RTN 502		95%	4%	0%	N	4,059	44%		
Riverton	RTN 505		86%	14%	0%	N	7,651	37%	GOOD/CURRENT OPPORTUNITY	3,252
Riverton	RTN 506		96%	4%	0%	N	4,949	37%	GOOD/CURRENT OPPORTUNITY	2,961
Riverton	RTN 508		96%	4%	0%	N	6,903	47%		
Riverton	RTN 513		N/A	N/A	N/A	Y	N/A	N/A		
Riverton	RTN 515		96%	4%	0%	N	3,672	44%		
Riverton	RTN 519		87%	13%	0%	N	5,014	30%	GOOD/CURRENT OPPORTUNITY	5,563
Riverton	RTN 521		98%	2%	0%	N	7,090	47%	GOOD/CURRENT OPPORTUNITY	4,023
Riverton	RTN 522		97%	3%	0%	N	4,722	51%		
Yokine	Y 316F		92%	8%	0%	N	1,547	15%	No Current Opportunity due to Committed Project	
Yokine	Y 316R		95%	5%	0%	N	1,049	26%	No Current Opportunity due to Committed Project	

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Yokine	Y 317F		86%	14%	0%	N	671	16%	No Current Opportunity due to Committed Project	
Yokine	Y 317R		91%	8%	0%	N	1,409	13%	No Current Opportunity due to Committed Project	
Yokine	Y 327F		96%	4%	0%	N	2,530	31%	No Current Opportunity due to Committed Project	
Yokine	Y 327R		90%	10%	0%	N	2,114	23%	No Current Opportunity due to Committed Project	
Yokine	Y 343F		95%	5%	0%	N	2,359	29%	No Current Opportunity due to Committed Project	
Yokine	Y 343R		92%	7%	0%	N	754	14%	No Current Opportunity due to Committed Project	
Yokine	Y 344R		96%	4%	0%	N	2,600	32%	No Current Opportunity due to Committed Project	
Yokine	Y 345R		94%	6%	0%	N	2,502	23%	No Current Opportunity due to Committed Project	
Yokine	Y 347R		94%	6%	0%	N	1,513	18%	No Current Opportunity due to Committed Project	

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Yokine	Y 348R		95%	5%	0%	N	2,009	21%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 502		94%	6%	0%	N	7,290	52%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 503		98%	2%	0%	N	2,084	41%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 504		94%	5%	1%	N	6,288	50%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 506		98%	2%	0%	N	4,033	55%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 510		94%	6%	0%	N	5,186	38%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 514		97%	3%	0%	N	8,637	43%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 515		97%	2%	1%	N	362	38%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 519		95%	5%	0%	N	2,386	47%	No Current Opportunity due to Committed Project	

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '28-29 Projected utilisation (with EV projection) ¹⁹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '28/29 (kVA)
Wanneroo	WNO 521		80%	19%	1%	N	569	15%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 522		95%	4%	0%	N	7,448	58%	No Current Opportunity due to Committed Project	
Wanneroo	WNO 524		92%	7%	1%	N	3,586	47%	No Current Opportunity due to Committed Project	

The NCMT tool can be used to view the feeders' location of the high utilisation feeders for the 10 zone substations listed above.

Network investigations will always be triggered based on the escalating risk profile that feeder over-utilisation poses as new data becomes available. For a geographical representation of where MV feeders are located, use Western Power Network Capacity Mapping Tool (NCMT)²⁰.

Country MV feeders

The following country ZSS feeders have been identified as priority network needs:

1. Busselton (BSN) 'High Priority Network | Good/Current opportunity'
2. Albany (ALB) 'Medium Priority Network | Good/Current opportunity'
3. Margaret River (MR) 'Medium Priority Network | Good/Current opportunity'

Table 3.6 indicates the projected MV feeder's utilisation, the present customer segment breakdown and an estimated amount of solar PV installed. The NCMT tool can be used to view the feeders' location.

²⁰ [Network capacity mapping tool](#)

Table 3.6: Anticipated distribution MV feeder utilisation at selected country ZSS

LEGEND		
	High Utilisation	above 80%
	Target Utilisation	>40% & <80%
	Low Utilisation	below 40%

Good/Current Opportunity Candidate: Strong chance of engaging NSS for feeder over-utilisation mitigation.

Emerging Opportunity Candidate: Emerging chance of engaging NSS for feeder over-utilisation mitigation.

No Current Opportunity due to Committed Project: Low chance of engaging NSS for feeder over-utilisation mitigation.

			Existing Customer Segment				Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '29/30 (kVA)
ZSS (Zone Substation)	MV feeder	Summer '29-30 Projected utilisation (with EV projection) ²¹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)				
Albany	ALB 504	High Utilisation	86%	13%	0%	N	3,111	20%	GOOD/CURRENT OPPORTUNITY	1,144
Albany	ALB 505	High Utilisation	82%	18%	0%	N	3,532	15%	GOOD/CURRENT OPPORTUNITY	5,184
Albany	ALB 508	High Utilisation	87%	12%	1%	N	3,106	15%	GOOD/CURRENT OPPORTUNITY	1,846
Albany	ALB 512	High Utilisation	92%	8%	0%	N	6,225	24%	GOOD/CURRENT OPPORTUNITY	3,307
Albany	ALB 514	Target Utilisation	69%	31%	0%	Y	2,195	20%		
Albany	ALB 517	Target Utilisation	29%	69%	2%	N	21	9%		
Albany	ALB 518	Target Utilisation	60%	39%	0%	N	270	25%		

²¹ Residential EV and projected utilisation is prior to investment.

			Existing Customer Segment							
ZSS (Zone Substation)	MV feeder	Summer '29-30 Projected utilisation (with EV projection) ²¹	Residential (%)	Small commercial (%)	Large commercial (%)	Large distribution generator (Y/N)	Embedded PV (kVA) Existing approx.	Customers with PV (%)	Opportunity candidate	Indicative future peak demand shortfall '29/30 (kVA)
Albany	ALB 520		75%	25%	0%	N	2,194	20%		
Albany	ALB 530		83%	16%	1%	N	3,361	24%		
Busselton	BSN 505		95%	5%	0%	N	6,343	46%	No Current Opportunity due to Committed Project	
Busselton	BSN 510		90%	9%	1%	N	5,230	38%	GOOD/CURRENT OPPORTUNITY	1,948
Busselton	BSN 536		N/A	N/A	N/A	N/A	N/A	N/A		
Busselton	BSN 539		92%	8%	0%	N	6,016	31%	No Current Opportunity due to Committed Project	
Busselton	BSN 540		84%	15%	0%	N	4,540	22%	GOOD/CURRENT OPPORTUNITY	3,597
Busselton	BSN 546		95%	5%	0%	N	6,678	34%	No Current Opportunity due to Committed Project	
Busselton	BSN 556		75%	24%	1%	N	4,708	24%	No Current Opportunity due to Committed Project	
Busselton	BSN 557		76%	23%	0%	N	7,610	33%	GOOD/CURRENT OPPORTUNITY	3,123
Margaret River	MR 508		88%	12%	0%	N	4,645	26%	GOOD/CURRENT OPPORTUNITY	485
Margaret River	MR 550		78%	21%	0%	N	3,876	28%	GOOD/CURRENT OPPORTUNITY	1,062
Margaret River	MR 551		81%	19%	0%	N	3,970	24%	GOOD/CURRENT OPPORTUNITY	2,555

3.4.2 Distribution Transformer (LV feeder) loading

Loading of Western Power's Distribution Transformers (DSTR) are estimated annually as there is currently no remote monitoring of all these assets. To promptly manage the network risk, the identified highly loaded distribution transformers will have a typical network solution applied.

To trial network opportunities identification at the DSTR level, data on selected +400 distribution transformer performance is available in the Network Data link on the NOM webpage, under Distribution Transformer Opportunities.

These +400 DSTR currently are low/medium network risk, but depending on connection of new customers, or increased demand from existing customers from temperature response, these DSTRs may require mitigation within the five-year medium-term outlook, and an alternative non-network option sought if economically viable to Western Power.

3.4.3 Reliability

Reliability performance against SSB compliance for the distribution network is monitored monthly as a rolling 12-month average. As new reliability issues arise, they are appropriately remediated and assessed to discover if there are any systemic issues which may impact other parts of the network. Generally, less than a third of outages are directly controllable by Western Power. The remaining two thirds of supply interruptions are mainly due to windborne debris, extreme weather events or caused by a third party. Due to the network characteristics where rural communities are supplied by long radial overhead feeders, and the susceptibility of these connections to environmental challenges, reliability is often below average for those remote and rural locations.

A Rural Long Reliability Initiative (RRI) program has commenced for Dongara, Lancelin, Northampton and Gnowangerup feeders to improve reliability performance of these four Rural Long feeders during the 2024/25 financial year. Planning for feeders supplying Denmark, Mullewa, Kalbarri, Morawa and Dalwallinu have commenced, continuing into the 2025/26 financial year. These Rural Long feeders were selected based on their historical long-term performance, with implementation of network solutions expected to commence during the 2024/25, until the end of financial year 2026/27. The network solution being built centres around adding network devices to sectionalising the network to minimise impact from outages, and the establishment of generation connection points and new interconnections between feeders to allow for back feeding under certain outage scenarios. This program is expected to continue for the remainder of the current AA5 Access Arrangement with learnings feeding into the next Access Arrangement.

Table 3.7 shows Western Power's 13 reliability focus Rural Long MV feeders, typically characterised by supply via long overhead network feeders, that are susceptible to both frequent and longer duration supply interruptions. A step change to the network's topology supplying these locations is needed to remove their dependence on the long radial overhead network, where this action proves economically prudent.

Table 3.7: Western Power's 13 reliability focus MV feeders

Feeder Name	Feeder Category	ZSS Name	ZSS Abbreviation	Feeder Abbreviation	Existing Customer Numbers	Existing Customer Segment					Embedded PV (kVA) Existing approx.	Customers with PV (%)
						Residential (%)	Small Commercial (%)	Large Commercial (%)	Large Distribution Generator (Y/N)			
ALB 514.0 WILLYUNG	Rural Long	ALBANY	ALB	ALB 514	2122	69%	26%	5%	Y	2,195	20%	
ALB 520.0 DENMARK	Rural Long	ALBANY	ALB	ALB 520	2467	75%	20%	5%	N	2,194	20%	
ALB 530.0 LOWER DENMARK	Rural Long	ALBANY	ALB	ALB 530	3182	83%	10%	7%	N	3,361	24%	
ENB 617.0 JURIEN	Rural Long	ENEABBA	ENB	ENB 617	2576	78%	17%	5%	N	4,210	27%	
GTN 647.0 NORTHAMPTON	Rural Long	GERALDTON	GTN	GTN 647	1677	71%	24%	5%	N	2,644	31%	
GTN 653.0 DONGARA	Rural Long	GERALDTON	GTN	GTN 653	3630	79%	13%	8%	Y	6,188	34%	
GTN 665.0 NARNGULU WEST	Rural Long	GERALDTON	GTN	GTN 665	2475	85%	13%	2%	N	3,666	31%	
GTN 666.0 MULLEWA	Rural Long	GERALDTON	GTN	GTN 666	903	64%	28%	8%	N	1,215	29%	
KAT 509.0 GNOWANGERUP	Rural Long	KATANNING	KAT	KAT 509	1054	35%	57%	8%	N	843	13%	
RGN 604.0 LANCELIN	Rural Long	REGANS	RGN	GTN 653	1951	83%	11%	7%	N	3,319	23%	
MOR 610.0 DALWALLINU	Rural Long	MOORA	MOR	MOR 610	809	49%	42%	9%	N	1,571	23%	
KDN 610.0 LAKE GRACE	Rural Long	KONDININ	KDN	KDN 610	880	45%	47%	8%	N	999	18%	
CUN 506.0 QUAIRADING	Rural Long	CUNDERDIN	CUN	CUN 506	681	64%	32%	4%	N	903	25%	

The NCMT can be used for a more detailed view of the topology of Western Power's MV network²⁰.

3.4.3.1 Alternative options for reliability

As mentioned in section 1.3.4, the town of Kalbarri has been equipped with a BESS, Emergency Response Generators (ERG) and a HV Injection Unit (HVIU) which has the capability to improve reliability performance for the town when fault durations are long and the BESS is depleted. In conjunction with the BESS, other cleaner solutions are invited to improve duration response at Kalbarri when battery storage is depleted.

Also, in section 1.3.4, the town of Walpole will be equipped with a pumped hydro microgrid with the objective of providing cleaner and greener energy and improved reliability for customers in the area. When the project is operational the realisation of reliability performance benefits may result in future opportunities to further enhance customer reliability outside of the existing microgrid catchment.

An Expression of Interest (EOI) process is progressing to provide alternative supply options for the localities of Mullewa and Newdegate. This serves to demonstrate that there are opportunities to provide reliability benefit to regional localities.

3.4.4 Network Support Service

There is an existing 2MVA power station in Ravensthorpe that provides a network support service (NSS) to Western Power. Connected to a 33kV KAT 509.0 feeder of the Katanning Zone Substation, this power station caters to supply existing and forecast load within power quality limits via daily peak lopping and can form a microgrid to improve reliability performance. Western Power is looking for alternate options with similar capacity and capability to connect at 33kV with synchronising capabilities.

There is an existing 1.8 MVA power station in Bremer Bay that provides network support services (NSS) to Western Power. Connected to a 33kV ALB 514.0 feeder of the Albany Zone Substation, this power station can form a microgrid to improve reliability performance. Western Power is looking for alternative options with similar capacity and capability to connect at 33kV with synchronising capabilities.

Appendix A

ACCESS CODE 2020

REQUIREMENTS

A.1 Access Code requirements indexed to Network Opportunity Map 2024

The following table is based on amendments to the Access Code 2004²² that describe the Network Opportunity Map requirements and provides a guide to locations in this document where each requirement is addressed. Where defined terms are used, indicated by *italics*, the full definition should be sought in the complete Access Code document.

Access Code 2020	Description of the obligation	Relevant section of this document
NETWORK OPPORTUNITY MAP		
6A.1	A <i>service provider</i> must <i>publish</i> and update a <i>network opportunity map</i> (NOM) by no later than 1 October each year.	This document, referenced data sheets and the NOM webpage
6A.2	A <i>network opportunity map</i> must include:	
6A.2(a)	a description of the <i>service provider's network</i> ;	Section 1.1 About Western Power
6A.2(b)	a description of its operating environment;	Section 1.1 About Western Power
6A.2(c)	the methodologies used in preparing the <i>network opportunity map</i> , including methodologies used to identify transmission and distribution system <i>constraints</i> and any assumptions applied;	Appendix B.1 Planning Methodology
6A.2(d)	analysis and explanation of any aspects of forecasts and information provided in the <i>network opportunity map</i> that have changed significantly from previous forecasts and information provided in the preceding year;	Appendix B.3 Forecasting Methodology
6A.2(e)	forecasts for the five-year forward planning period, including at least: (i) A description of the forecasting methodology used, sources of input information, and the assumptions applied; and (ii) Load forecasts for zone substations; (iii) To the extent practicable, primary distribution feeders, having regard to: (a) the number of customer connections; (b) energy consumption; and (c) estimated total output of known embedded generating units including, where applicable, for each item any capacity or voltage constraints on distribution feeders where applicable including estimated constraint periods; and	Appendix B.3 Forecasting Methodology Referenced Network Data

²² Electricity Networks Access Code (www.wa.gov.au)

6A.2(f)	forecasts of future zone substations including: (i) location; (ii) future level of output, consumption or power flow (in MW) of a <i>generating plant or load</i> ; and (iii) proposed commissioning time (estimate of month and year);	No new zone substations are proposed at this time.
6A.2(g)	a description of any factors that may have a material impact on the <i>service provider's network</i> , including factors affecting: (i) fault levels; (ii) voltage levels; (iii) power system security requirements; and (iv) the quality of supply to other <i>users</i> (if relevant);	Refer to TSP Transmission Network Section 3 Distribution Network
6A.2(h)	the annual deferred value for <i>augmentations</i> for the next 5 years;	Appendix C Referenced Network Data
6A.2(i)	for all <i>network asset</i> retirements and for all <i>network asset</i> de-ratings that, in each case, would result in transmission and distribution system <i>constraints</i> , that are planned over the forward planning period, the following information in sufficient detail relative to the size or significance of the <i>network asset</i> : (i) a description of the <i>network asset</i> , including location; (ii) the reasons, including methodologies and assumptions used by the <i>service provider</i> , for deciding that it is necessary or prudent for the <i>network asset</i> to be retired or de-rated, taking into account factors such as the condition of the <i>network asset</i> ; (iii) the date from which the <i>service provider</i> proposes that the <i>network asset</i> will be retired or de-rated; and (iv) if the date to retire or de-rate the <i>network asset</i> has changed since the previous <i>network opportunity map</i> , an explanation of why this has occurred;	Appendix B.2
6A.2(j)	a high-level summary of each: (i) major augmentation for which the regulatory test has been completed in the preceding year or is in progress; and (ii) priority project;	Appendix C
6A.2(k)	a summary of all <i>committed</i> investments to be carried out within the forward planning period with an estimated capital cost of \$2 million or more that are to address a <i>network issue</i> , including: (i) a brief description of the investment, including its purpose, its location, the estimated capital cost of the investment and an estimate of the date (month and year) the investment is expected to become operational; (ii) where there are reasonable <i>alternative options</i> to that investment, a brief description of the <i>alternative options</i> considered by the <i>service provider</i> in deciding on the preferred investment, including an explanation of the ranking of these options to the investment;	Appendix C Referenced Investment Data

6A.2(l)	<p>information on the <i>service provider's</i> asset management approach, including:</p> <ul style="list-style-type: none"> (i) a summary of any asset management strategy employed by the <i>service provider</i>; (ii) an explanation of how the <i>service provider</i> takes into account the cost of line losses when developing and implementing its asset management and investment strategy; (iii) a summary of any issues that may impact on the transmission and distribution <i>constraints</i> identified in the <i>network opportunity map</i> that has been identified through carrying out asset management; (iv) information about where further information on the asset management strategy and methodology adopted by the <i>service provider</i> may be obtained. 	Appendix B.2
---------	--	--------------

Appendix B

METHODOLOGIES

B.1 Planning methodology

As a Network Service Provider (NSP) it is Western Power's role to provide transmission and distribution services to generators and load customers within the South West Interconnected Network (SWIN). In providing these services Western Power operates the existing network and undertakes planning activities to ensure that new generator connections can be accommodated, with new and growing existing loads supplied according to established standards.

B.1.1 Network planning process

The Network Plan considers all relevant corporate objectives and network strategies combining them to produce an optimised plan which meets known constraints. This process includes an initial consideration of non-network solutions and application of new or emerging technologies.

B.1.1.1 Step 1 – Identify the issues

Western Power routinely assesses the condition of the network and its ability to supply existing and future demand against a range of requirements and obligations including the Technical Rules²³, ESM Rules²⁴, Network Quality and Reliability of Supply Code (NQRS)²⁵, Access Code and asset management requirements and objectives.

Key inputs to these assessments include:

- changes in forecast load and demand
- introduction of new loads or generation sources
- change in asset condition
- past reliability, safety or other network performance characteristics.

This assessment generates a list of network or asset issues that need to be further examined and may need to be addressed.

B.1.1.2 Step 2 – Solutions

This step develops a series of options or solutions to address the emerging limitations in the network and asset classes. This includes analysis of trade-offs between operational and capital expenditure, asset replacement and maintenance solutions and initial assessment of alternative options to traditional network solutions.

For augmentation expenditure, studies are performed against annually updated demand forecasts to identify issues that are present on the network today or forecast to emerge in the future. This process identifies the likely option, and a more detailed assessment occurs once investments are initiated and enter the scoping phase of the investment governance process.

For all demand conditions, strategic direction will be considered along with long-term network plans, corporate performance measures such as reliability and safety, operational experience, and asset

²³ Approved Technical Rules - Economic Regulation Authority Western Australia (erawa.com.au)

²⁴ <https://www.wa.gov.au/government/document-collections/electricity-system-and-market-rules>

²⁵ <https://www.wa.gov.au/organisation/energy-policy-wa/regulatory-framework>

condition, to identify issues that are present on the network and deliver better and more efficient long-term outcomes.

The outcome of this analysis is a set of high-level options that will be developed based largely on network solutions but also include consideration towards various alternative options and non-network solutions. Western Power uses discounted cash flow techniques to assess the feasibility of all options and make recommendations.

To estimate cost, Western Power uses a blend of historical average unit rates, estimations and capital project building blocks based on previous projects and/or benchmarking. Specific project estimates are developed where there are unique project components, or a benchmark does not exist.

The output of this approach is an unconstrained scenario which includes all the projects with respect to the network and asset needs.

B.1.1.3 Step 3 – Optimisation

The optimisation process includes actions such as:

- identification of network need and opportunities
- outputs from condition assessments
- verification of the lowest-cost option
- completion of risk reduction benefit assessments
- incorporation of the corporate strategy and plans for the network, including where higher capacity assets are needed in the long term, or considering utilisation and decommissioning of assets.

Where overlaps of drivers or dependencies with other projects exist on targeted assets, consideration is given as to how to optimise the solutions across projects.

B.1.1.4 Step 4 – Prioritisation

Assets within a particular group are prioritised and optimised in line with the relevant asset strategy, with the volume set by delivery constraints or the number of assets that can be addressed within the next 10 years. At an investment level these are prioritised by considering factors such as customers at risk, likelihood of failure, asset condition and criticality²⁶.

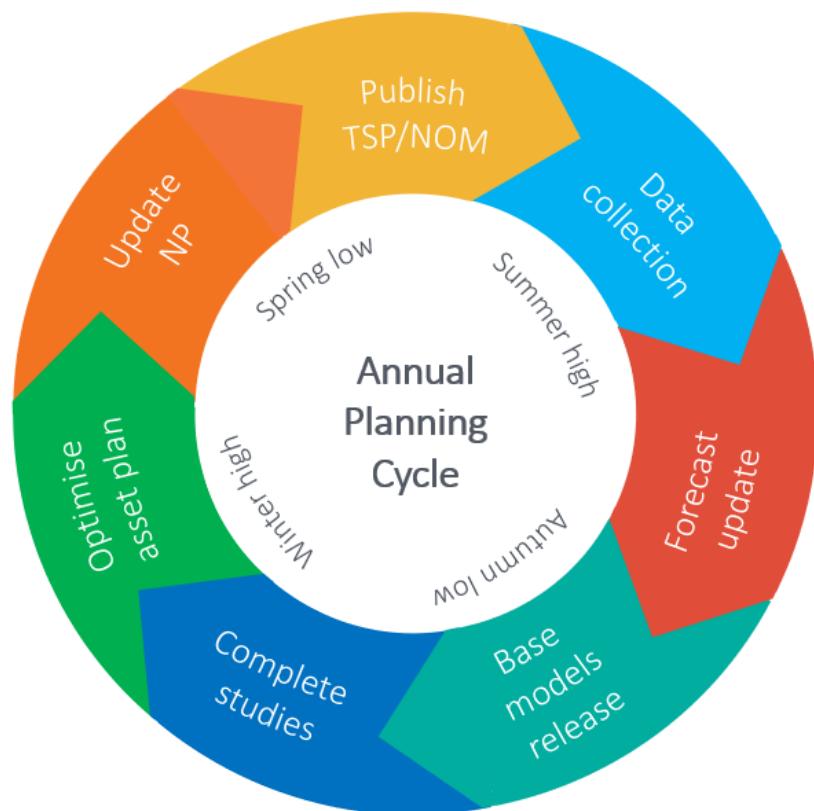
Some level of further optimisation is done at this stage with respect to the timing of works.

At the completion of this process, each portfolio is prioritised to satisfy any delivery or funding constraints.

Steps 1 to 4 provide a plan based on the least cost sustainable option and optimised across multiple network drivers and delivery.

²⁶ Criticality, with respect to the network, is considered only for transformers, switchboards and lines, which might take longer period to be replaced or brought back to service and supply a large number of customers.

B.1.1.5 Step 5 – Forecasting the future performance


Following the end-to-end process, Western Power forecasts the performance of the network based on the proposed projects against measures such as service standard benchmarks, anticipated safety performance, and movements in risk indices.

B.1.2 Annual Planning Cycle

The Annual Planning Cycle (APC) includes all the activities required to produce or update the 10-year Network Plan. The Network Plan includes all the network-related expenditure proposed over a 10-year period to meet a range of objectives and regulatory obligations, while maintaining an acceptable level of risk and performance for customers. It commences with the acquisition of latest telemetry and metering data, and culminates in a (constrained) list of risks and constraints that require addressing within the 10-year time horizon and publication of the NOM. The process takes approximately 12 months to complete with ad-hoc updates for any significant departures from anticipated results.

The Network Plan is usually finalised mid-way through the calendar year and provides a baseline for all network related expenditure across a 10 year outlook. It includes all committed projects, as well as candidates to address various risks and constraints in the network.

The delivery of the NOM is a key component of the APC.

Figure B.1.2: Annual planning review and reporting cycle

It is important to note that the timing of the NOM publication (before October 1) does not change the timing of individual opportunities, as those will be published on the NOM webpage as they reach maturity and become ready for option scoping. Opportunities published on the NOM webpage throughout the year may or may not be clearly indicated in the latest NOM, as they may arise in response to events or studies that eventuated after publication.

B.2 Asset management methodology

B.2.1 Asset Management Framework

Western Power's AMF is set within the context of the Australian and International Standard on Asset Management (ISO55001), ERA audit guidelines, Electricity (Network Safety) Regulations 2015 and Electricity Network Safety Management Systems Standard (AS 5577).

This framework underpins Western Power's Asset Management Policy and defines the structure of Western Power's Asset Management System (AMS). Western Power's AMS has been built on this framework and is a collection of strategies, standards, specifications, procedures, processes, tools and systems used for Asset Management. The AMS is a structured approach for fulfilling due diligence requirements and achieving continuous improvement in Asset Management performance. It supports decision-making and sustainable management of network assets, as per the requirements of Western Power's operating licences (ETL2 and EDL1) and other compliance requirements. This encapsulates all asset management documentation, responsibilities and supporting systems.

Western Power's AMS has undergone a range of independent assessments for maturity, adequacy and application and is certified to the International Standard for Asset Management ISO 55001. The certificate was renewed in August 2025 and is currently applicable to August 2028.

Figure B.2.1: Western Power's Asset Management Framework components

B.2.2 Asset management objectives

Asset management objectives are reflective of the value that Western Power should realise from its assets. They are aligned to Western Power's corporate objectives and customer insights and are summarised in Table B.2.1.

Table B.2.1: Western Power asset management objectives

Asset Management Objectives	Description
Safe (Safety and Environment)	<ul style="list-style-type: none"> Maintain overall safety of the network in line with jurisdictional obligations (eliminate/ reduce risk as low as is reasonably practicable), with actual performance not deteriorating below recent historical levels. The safety performance is measured qualitatively through risk ratings and quantitatively through failures and incidents. Incidents refer to fires, electric shocks and physical impacts due to Western Power's electricity transmission and distribution networks. Manage environmental performance by maintaining current network environmental risk rating.
Reliable	<ul style="list-style-type: none"> Maintain current service standard levels as defined by the relevant regulations; whilst ensuring ongoing sustainability of the network. Optimise the transition to the modular grid.
Affordable	<ul style="list-style-type: none"> Deliver safe and reliable supply at agreed levels of service at the lowest practical cost. Whole of life cycle costs and risk reduction are some of the key considerations.
Compliance	<ul style="list-style-type: none"> Comply with applicable regulatory obligations, unless otherwise agreed with the relevant authorities. Maintain current network compliance risk rating.
Sustainable	<ul style="list-style-type: none"> Enable the renewable future for the community by improving DER integration and coordination DSO functions with the help of advanced meter infrastructure (AMI), modernised connection standards for DER, and greater amounts of grid-connected storage to help balance periods of low demand and intermittent supply. This objective is primarily addressed through the Grid Strategy.

B.2.3 Asset Management challenges and strategies

Western Power's strategies aim to meet the asset management objectives outlined above for its transmission, distribution, and SCADA and Telecommunications network assets. The subsections below summarise the key challenges and strategies to manage the network assets as defined in Western Power's Network Management Plan.

B.2.3.1 Transmission network

Western Power's transmission network comprises lines, terminals and zone substations, operating as a system with voltages from 66kV to 330kV to transmit energy from large-scale generators to terminal substations, then to zone substations for distribution to customers (up to 33kV). There are more than 100,000 transmission assets grouped into 15 asset classes (including plant, lines and network facilities).

In broad terms, the transmission network faces the following challenges:

- Challenging network access to perform maintenance due to higher network stability risks and more stringent AEMO requirements for planned outages approval.
- An ageing fleet, particularly on the 66kV network, compounded by the need to extend operating life and increase asset utilisation to support transformation (network rationalisation, de-meshing).

Table B.2.2: Transmission Asset class challenges and strategies

Transmission asset class	Challenges	Strategies
Transmission lines	<ul style="list-style-type: none">• Increased load due to capacity expansion or network rationalisation through line uprating.• Aging of wood pole fleet (including crossarms), overhead conductors and steel structures. Jarrah wood poles being susceptible to carroty rot compound this issue.• Pole top fires due to electrical tracking across insulators and cross arms.• Aging of insulators on critical lines.	<ul style="list-style-type: none">• Identify condition and reinforce, repair or replace based on condition, prioritised by risk.• Commence a program of detailed corrosion assessment on steel structures.• Align transmission line replacements with substation maintenance to optimise outage management and delivery efficiency.• Introduce Remote Piloted Aircraft (RPA) line top inspections for no-fly zones and replace insulators based on risk.

Transmission asset class	Challenges	Strategies
Transmission Plant	<ul style="list-style-type: none"> • Increase in the number of conditions that require capex treatment. • Obsolescence: 8 per cent of power transformers and two types of switchboards: Yorkshire and GEC. • Diverse asset base: 25 manufacturers (19 models) of on-load tap changers and 20 manufacturers (75 models) of outdoor circuit breakers. 	<ul style="list-style-type: none"> • Identify condition and repair, refurbish or replace based on condition, prioritised by risk. Implement condition monitoring, prioritized by criticality. • Early assessment of network access risks and contingencies. • Early assessment of alignment between capex treatments and future vision for the substation. • Adjust scope of refurbishment to address most critical failure modes (e.g. bushing, tap changers, bunding, arc-flash). • Expand strategic spare coverage through trade-offs with other capex treatments and component harvesting. • Apply In-Service Network Spare Management Standard to determine optimum spare levels. • Roll-out online condition monitoring for a sub-set of critical assets.
Network Facilities (includes distribution and transmission buildings and grounds)	<ul style="list-style-type: none"> • Ageing of network facilities, compounded by historically low levels of investment. • Limited inventory and condition data available. • Statutory requirements related to workforce safety (fire protection, asbestos management). • Support to new functionalities required for assets installed in network facilities. • Cybersecurity and unauthorised access threats. 	<ul style="list-style-type: none"> • Identify building elements, their conditions and repair or refurbish based on condition, prioritised by risk. • Improve network facilities inventory data. • Develop and implement a cybersecurity strategy. • Progressively replace mechanical key with electronic access. • Progressively upgrade fire suppression systems.

B.2.3.2 Distribution Network

The distribution network consists of a high voltage (**HV**) distribution system operating at voltages of 33kV, 22kV, 11kV and 6.6kV and a LV distribution system operating at voltages of 415V and 240V. The distribution network consists of more than two million assets grouped into multiple asset classes. This includes structures, overhead conductors, underground cables, pole-top and ground-mounted plant and facilities, SPS, microgrids, service connections and public lighting. These are either electrically interconnected and working together, or dependant on each other (e.g. poles physically supporting conductors) to distribute electricity for end-customers.

Table B.2.3: Distribution Asset Class Challenges and Strategies

Distribution Focus Area	Challenges	Strategies
Distribution overhead (OH) network	<ul style="list-style-type: none"> Ageing distribution overhead network with approximately half of the assets reaching end of life maturity in the next 10 years, with risk managed via the distribution overhead network rebuild strategy. Wood poles and bare overhead conductors form the majority of the distribution overhead network, covering a vast and varied geographical area. While overhead network can provide an affordable option, it also presents an increased safety and reliability risk relative to other network construction options (e.g. underground or standalone power systems). Optimum investment balance between short to medium term risk management and network transformation where opportunities to transform the network take time to be realised. Reliability and economic impacts of external events (e.g. extreme weather events, bushfires destroying assets) present significant challenges for the distribution overhead network. Pole top fires on the distribution overhead network caused by accumulation of air-borne contaminants impact both safety and reliability. 	<ul style="list-style-type: none"> Monitor condition through routine inspections. Every structure in extreme and high fire risk zones or very high and high public safety zones will be inspected at least once every year as a part of the Holistic Inspection regime. Distribution OH network rebuild strategy identifies mature sections of the network to be rebuilt prioritised by risk, enabling transformation of parts of the network as per the Grid Strategy. The network rebuild strategy also identifies high risk assets for treatment to manage short term risk and minimise regrettable investment in areas to be transformed. Pole-top fires are mitigated through insulator replacements or applying silicone to insulators with a higher likelihood of leakage currents, prioritised by risk. Silicone insulators are specified for use in areas where polymeric insulators are not performing well.
Distribution Underground Network	<ul style="list-style-type: none"> Failure of distribution underground cables over the past five years have led to reliability impacts especially in CBD and urban areas. Past asset management strategies have been predominantly to treat on failure with little proactive management. Asset data in systems (e.g. installation data and type) is limited in some cases. 	<ul style="list-style-type: none"> Carry out targeted testing on priority cables to assess condition. Identify priority cables considering asset knowledge, past performance and criticality. Replace cables where condition indicates end of life. Use insights gained from testing regime to enhance understanding of condition of the cable fleet.

Distribution Focus Area	Challenges	Strategies
Service connections	<ul style="list-style-type: none"> Service connections continue to be the highest (%) contributor to the electric shock count due to Western Power's network (e.g. unbalanced loads, high impedance conductors). Visual inspection of OH service connections can identify obvious defects and many remaining 'twistie' type connections but are ineffective at identifying failure modes that contribute to most shocks (e.g. high resistance neutral connections). Most failures on underground service connections are due to vehicles colliding with the pillars. 	<ul style="list-style-type: none"> Apply Service Connection Condition Monitoring (SCCM) on OH and UG customer service connections through AMI to detect electric shock hazards. Assess condition of OH service connections through periodic visual field inspection and prioritise treatment of defects by risk. Identify and replace remaining 'twistie' type of service connections. Identify frequently hit pillars and relocate, protect (bollards) or replace with underground service pits.
Ring main units (RMU)	<ul style="list-style-type: none"> There are ~2,000 RMUs, manufactured between 2011 and 2016, that are more prone to gas leaks due to a type defect. The failure rate of these RMUs has been increasing over the last few years. 	<ul style="list-style-type: none"> Apply operational restrictions on these RMUs to prevent remote operation on a low gas unit. Replace these RMUs, prioritising by risk.
Public lighting	<ul style="list-style-type: none"> Growing asset base driven by increasing undergrounding activity. Ratification of Minamata convention results in Western Power being unable to procure globes for maintenance of in-service mercury vapor luminaires. 	<ul style="list-style-type: none"> Assess condition of Public Lighting, Dedicated Streetlight Metal Pole through periodic inspection and remediate defects (replace or reinforce) based upon condition. Reactively remediate luminaire and streetlight cable faults reported by customers. Proactively replace non-LED luminaire with LED luminaire.

B.2.3.3 SCADA and telecommunications network

The Supervisory Control and Data Acquisition (SCADA) and telecommunications network is integral to the safe, reliable, and efficient operation of Western Power's transmission and distribution networks, providing services such as protection, monitoring, control operational voice, meter reading, remote management and maintenance.

The SCADA and telecommunications network consists of more than 10,000 assets and over 5000 km of communication cables/links.

Table B.2.4: SCADA and Telecommunications asset class challenges and strategies

SCADA and telecommunications asset class	Challenges	Strategies
Grid automation assets	<ul style="list-style-type: none"> • 45% of transmission substation automation assets are beyond their mean replacement lift (MRL), however 70% are obsolete as they've reached the end of their manufacturing lifecycle and have no manufacturer support resulting in the depletion of electronic spares and performance issues (obsolete automation electronic assets cannot be expanded to accommodate protection relay upgrades, resulting in capacity issues). • There are mandatory requirements for Western Power to provide connectivity and visibility of the network to AEMO, defined by the AEMO Data Communications Standard and Technical Rules (Sections 2.2, 2.3.9, 3.2.1, 3.3, 5.3.1). 	<ul style="list-style-type: none"> • Replace non-compliant, end-of-life and obsolete assets on a risk priority basis. Recover decommissioned assets to increase strategic spares holdings. • Enhance remote monitoring and management of assets. • Grid Automation Asset risks are assessed within the guidelines on the Network Risk Management Standard (NRMS) which is a key component within Western Power's Asset Management System.

SCADA and telecommunications asset class	Challenges	Strategies
Telecommunications Network Access Assets	<ul style="list-style-type: none"> Telecommunications network access assets are electronic equipment that generally exhibit a random pattern of failure that can be difficult to effectively predict. The lifecycle of electronic assets is significantly impacted by the supportability driven by product obsolescence. The obsolescence risk is assessed and addressed by a planned program of work. 60% of telecommunications network access assets are obsolete (end of life with no manufacturer support) resulting in the depletion of electronic spares and performance issues. There are mandatory compliance requirements for Western Power telecommunication network to: <ul style="list-style-type: none"> support associated Technical Rules (Sections 2.9, 3.4.10 and 3.5) compliance in relation to primary plant protection and to monitor and control primary plant with SCADA. provide operational voice communications to generators as set out in Section 3.3.4.3 (d) of the Technical Rules. manage our communications facilities within the Telecommunications Act (1997). 	<ul style="list-style-type: none"> Real time monitoring of network access assets. Plan prioritised, proactive 'whole of family' replacement on service withdrawal, technology obsolescence, type defects, endemic degraded performance, or reduced capacity. Recover decommissioned assets to increase strategic spares holdings. Periodic audit and review of internal cyber security frameworks and standards and plan corrective remediation, as required. Explore options to apply current design standards, retire or expand service given the telecommunications network strategy. Meet all regulatory and contractual obligations and prepare supporting documentation. Telecommunications network access assets risk is assessed within the guidelines on the Network Risk Management Standard (NRMS) which is a key component within Western Power's Asset Management System.

SCADA and telecommunications asset class	Challenges	Strategies
Radio system	<ul style="list-style-type: none"> Frequency spectrum embargoes limit the availability of microwave radio licences. Embargo 49 has the most impact by limiting the use of most of the microwave frequency spectrum (2 to 52 GHz) in the Mid-West region. A licence holder needs to vacate a frequency within 90 days if Australian Communication Management Authority deem it necessary to allow for its intended purpose as per the corresponding embargo. Increasing bandwidth requirements for current and upcoming services are putting a strain on the capacity limits of UHF/VHF radios. There are mandatory compliance requirements for Western Power telecommunication network to: <ul style="list-style-type: none"> support associated Technical Rules (Sections 2.9, 3.4.10 and 3.5) compliance in relation to primary plant protection and to monitor and control primary plant with SCADA. provide operational voice communications to generators as set out in Section 3.3.4.3 (d) of the Technical Rules. manage our communications facilities within the Telecommunications Act (1997). 	<ul style="list-style-type: none"> Real time monitoring of radio assets. Plan prioritised, proactive 'whole of family' replacement on service withdrawal, technology obsolescence, type defects, endemic degraded performance, or reduced capacity. Recover decommissioned assets to increase strategic spares holdings. Meet all regulatory and contractual obligations and prepare supporting documentation. Radio systems risks are assessed within the guidelines on the Network Risk Management Standard (NRMS) which is a key component within Western Power's Asset Management System.

B.2.4 Supporting strategies

In addition to asset management-specific strategies, Western Power also has several underpinning strategies that guide day-to-day decision making, ensuring everything from compliance with regulations to the safety of our people.

B.2.4.1 Reliability strategy

Reliability is a key measure of network performance that reflects the service that Western Power delivers to its customers. Western Power is required to ensure reliability of supply is maintained at acceptable levels. Reliability is measured in relation to the number of sustained interruptions of power supply experienced by customers.

We aim to maintain current service performance levels in accordance with SSBs, maintain current levels of compliance with the minimum service standard performance levels defined by the NQRS Code where reasonably practical, and improve reliability performance better than SSBs where it is valued by customers and economically prudent. Where there is non-compliance (or a trend towards non-compliance) a pathway to compliance will be established.

B.2.4.2 Power quality strategy

Power quality is the level of useability (or usefulness) of the electricity supply delivered to the customer. This is quantified in terms of the degree to which the electricity supply is of a voltage that is free from major distortions and fluctuations and maintains a stable frequency. Power quality focuses on characteristics such as steady state voltage limits (high and low volts), voltage unbalance, voltage flicker, voltage transients (voltage step change, sags and swells), harmonics (waveform distortion) and system frequency.

We aim to meet the power quality objectives as specified in the TR, NQRS Code and applicable industry standards through appropriate maintenance, performance monitoring, investigations and appropriate design.

B.2.4.3 Network safety strategy

Electricity by its nature is hazardous. To serve its purpose, Western Power builds, operates and maintains potentially hazardous assets. The electricity network presents safety risks to members of the public, Western Power's personnel, and the environment, due to:

- electric shock from contact with electricity
- fires due to failure of network assets or interference from external factors (e.g. third party, vegetation or fauna interference)
- physical impact due to failure of network assets
- environment hazards associated with the network and including impact on flora and fauna
- loss of supply in context of safety is an incident that involves loss of supply to essential services (e.g. life support system, traffic lights, hospitals, water supply).

Western Power aims to maintain the overall safety of the system in line with all jurisdictional obligations, including eliminating safety risks so far as is reasonably practicable, and if it is not reasonably practicable to eliminate a safety risk, reduce that risk to as low as reasonably practicable (i.e. ALARP). This implies that if a safety measure exists that can reduce the risk of an incident occurring, it must be implemented if the cost is not grossly disproportionate to the benefit gained. Western Power will continue to implement these principles at all levels of our business.

B.2.5 Network Asset Retirements and De-ratings

B.2.5.1 66kV to 132kV Conversion Strategy

One of the key transmission network transformation strategies is the 66kV Rationalisation Strategy, which provides guidance on investment decisions related to the replacement/upgrade of the 66kV network. This strategy highlights the opportunities that are available to reduce costs when replacing the 66kV networks with a higher capacity 132kV assets. In the long term, it is anticipated that all the 66kV assets in the SWIS will be removed from the network, reducing the volume of assets requiring maintenance.

Most of the 66kV networks are at or near their mean replacement life and in some cases beyond their useful design life. As a result, a portion of 66kV network assets will require replacement in the short-to medium-term. Further opportunity exists to improve medium- to long-term affordability by converting to the higher capacity 132kV network, which also reduces the volume of assets to replace and maintain.

Western Power has nine 66kV loops scheduled for progressive conversion into 132kV in the next 60 years as assets reach their end of life, including:

- Bunbury: staged conversion from 2030 until 2078
- Muja: conversion of Muja 66kV assets by 2032 and Collie 66kV assets by 2078
- South Fremantle: conversion between 2035 and 2039
- Western Terminal: conversion in 2035
- East Perth: conversion completed to 132kV
- Kojonup: staged conversion from 2040 until 2055
- Cannington: staged conversion from 2023 until 2049
- Kwinana: to coincide with major works
- East country: under development.

The 66kV conversion strategy is expected to deliver:

- Maximised utilisation of the 66kV assets prior to conversion
- Ensure risk profile is maintained while assets await conversion
- Delivery of long-term cost reductions
- Provision of a set of strategic rules to support end-of-life asset management
- Improved alignment between network and asset strategies

It will also address existing ageing asset condition issues with optimised long-term benefits.

B.2.5.2 Asset de-ratings

Western Power's maintenance strategies, implemented through a range of preventative and corrective programs, ensure that in-service assets rarely need to be de-rated. On occasion, because of an unplanned event a temporary reduction in load bearing capacity may be applied to an asset or part of the network until such time as necessary repairs can be made. Each asset class has a defined spares strategy that ensures works are carried out quickly and efficiently.

Appendix C

INVESTMENTS

C.1 Investment Management framework

C.1.1 Investment management lifecycle

The purpose of investment management is to manage the progress of an individual investment through its lifecycle to ensure it meets its objectives. The investment management lifecycle is a gated process with six phases and six control gates, where each control gate sets the mandatory deliverables and approvals that must be in place before the investment can progress to the next phase.

The scoping phase is a key period in which a proposal might be sought via any channels available to Western Power (online, via registered suppliers) for a solution that does not involve traditional network assets.

Investment Management

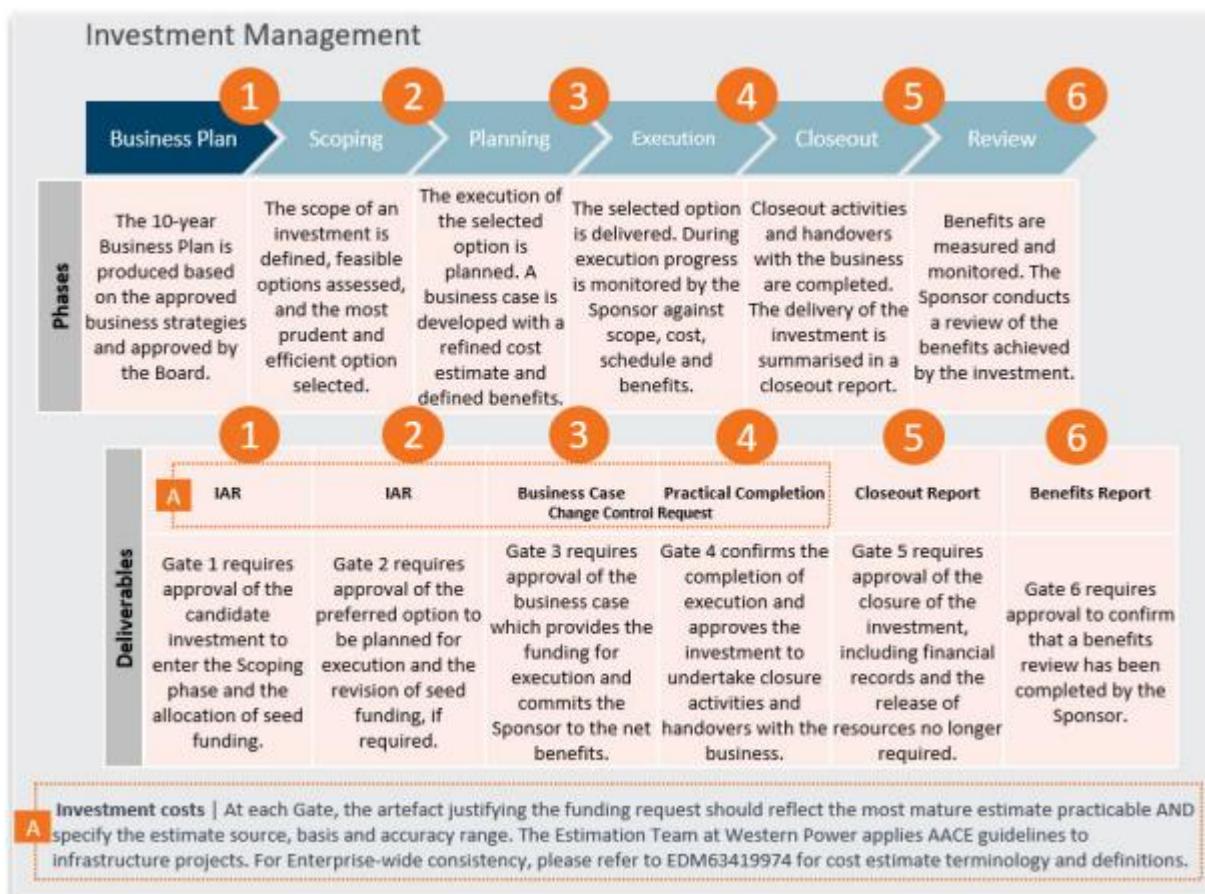


Figure C.1.1: Details of phases and gates in the investment lifecycle

C.2 Network opportunity valuation

C.2.1 Annual deferred value for augmentation

During the scoping phase of an investment, various network and non-network solutions that address the constraint, risk or limitation identified by the proposed investment are investigated for feasibility. A Class 5 estimate is usually produced for all feasible solutions for the purposes of comparison and evaluation.

Where several solutions are viable, Western Power will, as appropriate, consult industry participants and providers, for example by requesting proposals for solutions. Other engagement methods are outlined in more detail in the AOS.

One of the options assessed in the scoping phase when considering network augmentation is investment deferral. This option is compared against the estimated value of the most efficient network option being considered. Network options may be diverse in their nature and cost, for example they can range from asset replacements or upgrades to changing the network layout via a switching program.

If a non-network investment can effectively defer the most efficient network option identified, then there is a financial benefit to the network associated with that deferral. The maximum value of such a benefit is calculated using the formula below for each year of the deferral.

$$\text{ADV}(Y) = \text{PNI} \times (\text{WACC} + \text{DEPR})$$

Where:

- Y is the year of calculated value
- ADV is the annual deferred value (ADV) in year Y in \$/annum
- PNI is the potential network investment being deferred²⁷
- WACC is the weighted average cost of capital (nominal value)
- DEPR is the depreciation rate (straight line, average weighted lifespan of 30 years)

Network augmentation investments can only be deferred if no substantial financial commitments have been made, and solution options are still being examined.

²⁷ Highest net value/benefit option

C.3 Network investments

C.3.1 Committed investments and initiatives

Investments are considered committed when in the execution phase. Additional criteria for investments to be considered as committed are:

- Ministerial approval (if required)
- Government Trading Enterprise reform act (if required)
- Infrastructure WA approval (if required)
- Board commitment (if required)
- Western Power funding approval in the form of an approved business case
- Regulatory test met (if required)
- For augmentations required to connect a customer, that a customer has unconditionally signed a contract with Western Power (if required).

While investments deemed to be in the planning phase are not normally considered committed, they are assumed to be for the purposes of NOM2025. This is because while those investments do not have full funding approval, options analysis has been completed and a solution for the specific network issue has already been selected. A re-evaluation of additional options would impact the project progress, potentially jeopardising the required in-service date.

Committed transmission network investments above two million dollars in capital cost, developed in response to existing or emerging constraints, can be found on the NOM webpage. The list contains a brief description of the investment, its location and network driver, estimated cost (4 and 5 class) and a required in-service date. Where applicable and available, investment details also provide a summary of alternative options that were considered.

Detailed data can be accessed via the investment data link on the NOM webpage.

C.3.2 Proposed investments and initiatives

For the purposes of NOM2025, a proposed investment is an investment that is either in or preceding the scoping phase at the early stage of inclusion in the investment governance framework. These investments might only have a notional description and value until such time as they are assessed in more detail and potential solutions can be considered.

For proposed network augmentations, investments are associated with an ADV which demonstrates anticipated deferral value should an alternative option be found to have greater net benefit than the anticipated network solution. The details of proposed network augmentations can be found via the Investment Data link on the NOM webpage.